功率因数校正电路工作原理

功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特性接近于阻性,从而改善效率低下的方法叫功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。

图1在具有感性负载中供电线路中电压和电流的波形

而在上世纪80年代起,用电器具大量的采用效率高的开关电源,由于开关电源都是在整流后用一个大容量的滤波电容,使该用电器具的负载特性呈现容性,这就造成了交流220V在对该用电器具供电时,由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通。虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。

在正半个周期内(1800),整流二极管的导通角大大的小于1800甚至只有300-700,由于要保证负载功率的要求,在极窄的导通角期间会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态,它不仅降低了供电的效率,更为严重的是它在供电线路容量不足,或电路负载较大时会产生严重的交流电压的波形畸变(图3),并产生多次谐波,从而,干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

图2

自从用电器具从过去的感性负载(早期的电视机、收音机等的电源均采用电源变压器的感性器件)变成带整流及滤波电容器的容性负载后,其功率因素补偿的含义不仅是供电的电压和电流不同相位的问题,更为严重的是要解决因供电电流呈强脉冲状态而引起的电磁干扰(EMI)和电磁兼容(EMC)问题。

这就是在上世纪末发展起来的一项新技术(其背景源于开关电源的迅速发展和广泛应用)。其主要目的是解决因容性负载导致电流波形严重畸变而产生的电磁干扰(EMl)和电磁兼容(EMC)问题。所以现代的PFC技术完全不同于过去的功率因数补偿技术,它是针对非正弦电流波形畸变而采取的,迫使交流线路电流追踪电压波形瞬时变化轨迹,并使电流和电压保持同相位,使系统呈纯电阻性技术(线路电流波形校正技术),这就是PFC(功率因数校正)。

所以现代的PFC技术完成了电流波形的校正也解决了电压、电流的同相问题。

图3

于以上原因,要求用电功率大于85W以上(有的资料显示大于75W)的容性负载用电器具,必须增加校正其负载特性的校正电路,使其负载特性接近于阻性(电压和电流波形同相且波形相近)。这就是现代的功率因数校正(PFC)电路。

源功率因数校正电路如何调试电路

呵呵

这么说你是产品设计者了。

作为设计者,你要把电路的工作原理吃透,否则你的产品总会有问题。电路吃透了,调试就知道该如何做了。

我不知道你的电路,所以只能说思路。

源功率因数校正电路怎么分类

有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分。

功率因数校正器PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。

请解释图中斩波电路的工作原理。

看不太清楚,应该是一个PFC电路,就是功率因数校正电路。所谓斩波,比方说吧,一个直流电路中有一个开关,你不断的去操作这个开关,就是反复的开关,这就是斩波,那么在开关的后面的电压会变成一个个的方波。具体到这个电路中那个MOS管就相当于是开关,不过它的开与关是由U1?控制的,它开关后是一串从宽到窄又从窄到宽不断变化的波形,经过后面的二极管后在电容上积分,变成稳定的直流电。那个连续变化的波形的目的是为了让电流跟踪交流电的电压波形,达到功率因数校正的目的。不知道这么说你能明白不?

功率因数校正电路工作原理 功率因素校正电路工作原理

功率因素校正电路工作原理

有源功率因数校正PFC电路主要有升压型、降压型、升压--降压型和回扫型等

基本电路形式,其中升压型有源PFC电路在一定输出功率下可减小输出电流,减小输

出滤波电容的容值和体积,故在电子镇流器中广泛应用。升压型有源PFC电路在控制方法上,有电感电流断续传导模式和峰值电流控制模式。其电路原理图如图2所示。

电路工作原理如下:Q1导通时,D5截止,电容C1向负载放电;Q1截止,电感L1储能经D5对电容C1充电。由于Q1和D5交替导通,使整流器输出电流经电感L1连续。这样输入电流也连续。图中,R1取样输入电压,保证通过电感L1的电流跟随输入电压按正弦规律变化,通过L1的高频电流包络正比于输入电压,其平均电流呈正弦波形,使输入电流呈正弦波;R2取样输出电压,控制APFC控制器的输出

占空比,稳定输出电压。

目前,APFC专用芯片很多,在电子镇流器中应用广泛,具体电路不做详细介绍,可参阅参考文献。

4 利用自振荡半桥PWM驱动器设计的APFC电路

在某些自振荡半桥PWM驱动器电路中,可以利用PWM驱动器输出固定频率的

脉冲来作APFC控制,这里介绍两种典型电路。

4.1利用自振荡输出波形控制的APFC电路

电路原理图如图3所示。

升压电感L1、二极管D5、电容C2和开关管Q3等组成APFC电路。由于PWM驱动器U1输出脉冲的频率和占空比都是固定的,Q3导通时,D5截止,C2向负载放电;Q3截止时,电感L1产生的突变电势使D5正向偏置而导通,电感L1通过D5向C2和负载释放储能,此时整流二极管电流经电感L1连续,使输入电流波形连续,呈正弦波形,可将线路功率因数提高到0.95以上,使输入电流总谐波失真度(THD)降低到10%以下。

4.2 利用自振荡PWM驱动器的定时电路

图3利用自振荡PWM驱动器输出波形控制的APFC原理电路图图4利用自振荡PWM驱动器的定时器设计的APFC原理电路图和波形图设计的APFC电路自振荡半桥PWM驱动器的振荡器是一个类似555的定时振荡器,CT端为锯齿波,可以用一电路产生同频、占空比可调的APFC电路。其原理电路如图4所示。

自振荡PWM驱动器的CT端波形为锯齿波,送到比较器U2的正端;将直流输出

电压分压送到比较器U2的负端。当C点的电压小于D点时,E点为高电平,Q4导通;

当B点为高电平时,F点为高电平,Q3导通,电感L1储能,电容C2向后级供电。当C

点电压高于D点时,E点为低点平,不论F点电平状态,Q4截止,Q3截止,电感L1经

D5向C2和后级释放储能。这样二极管电流经电感L1连续,各点相关波形如图4(B)所示。

从波形上可以看出F点波形脉冲宽度小于A或B,而且可调,但小于50%;通过

调整R1、R2的分压比,可调整输出电压和输出功率,构成可调输出电路,这在开关电源和电子镇流器中有较广泛的应用。

5 利用TOPSwitch开关构成的APFC电路

TOPSwitch是一种离线式PWM开关,其内部集PWM控制器和MOSFET开关管为

一体。由其构成的APFC电路如图5所示。

在图5中,控制器U1、电感L1、二极管D5、D6和电容C1构成APFC电路,当控制

器U1的C端(控制端)达到设定电压时,U1被启动。电阻R1取样输入瞬时电压,电阻

R2取样输出电压,U1的控制端输入电流影响输出占空比,其占空比与输入电流成反

比,随输入电压线性变化。通过U1的调整,输入平均电流呈正弦波形,且与输入电压保持同相位,是一种固定频率电流断续模式的APFC电路。可将线路功率因数提高到0.98左右。

此外,还可利用紧凑型自振荡半桥PWM驱动器(如IR51HXX系列)构成类似图

4和图5的APFC电路。紧凑型自振荡半桥PWM驱动器是集紧凑型自振荡PWM电路

和两只MOSFET管于一身,具有电路简单、紧凑的特点,只适合于节能灯和小型开关电源电路。

6 结束语

有源功率因数校正技术应用在高压钠灯电子镇流器上,使其输入侧的功率因数提

高到0.99以上,将总谐波失真度降低到10%以下,反馈到电网的谐波大为减少,起

到了节约能源、降低消耗和减少电网污染的作用。

PFC电路的工作原理?

PFC电路的工作原理是由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。

自从用电器具从过去的感性负载(早期的电视机、收音机等的电源均采用电源变压器的感性器件)变成带整流及滤波电容器的容性负载后,其功率因素补偿的含义不仅是供电的电压和电流不同相位的问题,更为严重的是要解决因供电电流呈强脉冲状态而引起的电磁干扰(EMI)和电磁兼容(EMC)问题。

这就是在上世纪末发展起来的一项新技术(其背景源于开关电源的迅速发展和广泛应用)。其主要目的是解决因容性负载导致电流波形严重畸变而产生的电磁干扰(EMl)和电磁兼容(EMC)问题。

所以现代的PFC技术完全不同于过去的功率因数补偿技术,它是针对非正弦电流波形畸变而采取的,迫使交流线路电流追踪电压波形瞬时变化轨迹,并使电流和电压保持同相位,使系统呈纯电阻性技术(线路电流波形校正技术),这就是PFC(功率因数校正)。

扩展资料

在有滤波电容的整流电路中,供电电路的电压和电流波形完全不同,电流波形;在短时间内呈强脉冲状态,极管导通角小于1800(根据负载R和滤波电容C的时间常数而决定)。

该电路对于供电线路来说,由于在强电流脉冲的极短期间线路上会产生较大的压降(对于内阻较大的供电线路尤为显著)使供电线路的电压波形产生畸变,强脉冲的高次谐波对其它的用电器具产生较强的干扰。

为了抑止电流波形的畸变及提高功率因数,现代的功率较大(大于85W)具有开关电源(容性负载)的用电器具,必须采用PFC措施,PFC有;有源PFC和无源PFC两种方式。

不使用晶体管等有源器件组成的校正电路。一般由二极管、电阻、电容和电感等无源器件组成,向目前国内的电视机生产厂对过去设计的功率较大的电视机。

在整流桥堆和滤波电容之间加一只电感(适当选取电感量),利用电感上电流不能突变的特性来平滑电容充电强脉冲的波动,改善供电线路电流波形的畸变,并且在电感上电压超前电流的特性也补偿滤波电容电流超前电压的特性,使功率因数、电磁兼容和电磁干扰得以改善。

参考资料来源:百度百科-PFC (功率因数校正)

功率因素校正电路工作原理、功率因数校正电路工作原理,就介绍到这里啦!感谢大家的阅读!希望能够对大家有所帮助!