变频器是如何改变频率和电机转速的

1.电机的旋转速度为什么能够自由的改变呢?

电机旋转速度单位:r/min即每分钟旋转的次数,也可以表示为rpm。

例如:2极电机50Hz3000[r/min] 4极电机50Hz1500[r/min]

结论:电机旋转的速度与频率成比例。

感应式交流电机(以下简称为电机)的旋转速度近似地取决于电机的极数和电机的频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该直来改变电机的转速。

另外,频率也能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制了。

因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。

n=60f/p

n:同步速度

f:电源频率

p:电机极对数

结论:改变频率和电压是最优的电机控制方法。

如果仅改变频率而不改变电压的话,频率的降低时会使电机出于过电压(过励磁),导致电机可能会被烧坏。因此变频器在改变频率的同时也必须要同时改变电压。输出的频率在额定频率以上时,电压却不可以继续增加,最高也只能是等于电机的额定电压。

2.当电机的旋转速度(频率)改变时,其输出转矩会有怎样的变化?

变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。

电机在工频电源供电时起动的加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个远超于额定电流的大的起动电流。而当使用变频器时,变频器的输出的电压和频率则是逐渐加到电机上的,所以电机起动电流冲击要减小一些。

通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足的缺点,甚至在低速区电机也可以输出足够的转矩。

3.当变频器调速到大于50Hz频率时,电机的输出转矩将会降低

通常的电机是按50Hz电压设计制造的,所以其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速.即(T=Te,P<=Pe)

变频器输出频率大于50Hz频率时,电机产生的转矩会以和频率成反比的线性关系下降。

当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。

举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。

因此在额定频率之上的调速被称为恒功率调速.(P=Ue*Ie)

4.变频器50Hz以上的应用情况

大家知道,对一个特定的电机来说,其额定电压和额定电流是不变的。

如变频器和电机额定值都是:15kW/380V/30A,电机可以工作在50Hz以上。

当转速为50Hz时,变频器的输出电压为380V,电流为30A.这时如果将输出的频率增大到60Hz,变频器的最大输出电压电流还只能为380V/30A.很显然输出的功率不会改变.所以我们称之为恒功率调速.

这时的转矩情况怎样呢?

因为P=wT(w:角速度,T:转矩).

因为P不变,w增加了,所以转矩会相应减小。我们还可以再换一个角度来看:

电机的定子电压U=E+I*R(I为电流,R为电子电阻,E为感应电势)

可以看出,U,I不变时,E也不变.而E=k*f*X,(k:常数,f:频率,X:磁通),所以当f由50-->60Hz时,X会相应减小。

对于电机来说,T=K*I*X,(K:常数,I:电流,X:磁通),因此转矩T会随着磁通X的减小而减小.

同时,小于50Hz时,由于I*R很小,所以U/f=E/f不变时,磁通(X)为常数.转矩T和电流成正比.这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力.并称为恒转矩调速(额定电流不变-->最大转矩不变)

结论:当变频器输出频率从50Hz以上增加时,电机的输出转矩会减小.

5.其他和输出转矩有关的因素

发热和散热的能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。

载波频率:一般变频器所标的额定电流都是以最高载波频率,最高环境温度下能保证持续输出的数值。降低载波频率,电机的电流不会受到影响。但元器件的则会发热会而减小。

环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.

海拔高度:海拔高度的增加,对散热和绝缘性能都会有影响.一般1000米的以下可以不考虑.如果是超过1000米,则以上每1000米降容5%就可以了。