今天小编要和大家分享的是谐振式,开关电源相关信息,接下来我将从谐振式开关电源电路图大全(准谐振反激式/电源滤波器/开关电源),本发明涉及开关电源领域,特别是一种用于led的半桥自激谐振隔离驱动这几个方面来介绍。
本发明涉及开关电源领域,特别是一种用于led的半桥自激谐振隔离驱动
谐振式开关电源电路图(一)
谐振式开关电源电路图(二)
准谐振反激式开关电源原理分析
准谐振反激式开关电源基本原理和等效原理图如图1、2所示。其中Lm为原边励磁电感,Lk为原边漏感。电容Cd包括主开关管Q的输出电容Coss,变压器的匝间电容以及电路中的其他一些杂散电容。Rp为初级绕组的寄生电阻,包括变压器原边绕组的电阻,铜线的高频趋肤效应、磁材料的损耗以及辐射效应的等效电阻。
准谐振反激式开关电源工作在DCM或CRCM状态,副边二极管电流下降到零之后,电容Cd,原边电感Lp=Lm+Lk以及电阻Rp构成一个RLC谐振电路,主开关管Q两端电压Vds将产生振荡。传统的反激式开关电源主开关管可能Vds振荡波形任一点处开通,视负载情况而定。而准谐振反激式开关电源,不管负载情况如何,总是在当检测到Vds波形振荡到谷底时,控制器控制主开关管Q开通,降低主开关管Q的开通损耗,同时使得输出电容Cd上的能量损耗达到最小,波形图如图3所示。
图3
准谐振模式的实现
准谐振模式实现的具体电路如图4、5所示,辅助绕组电压检测信号与控制芯片的7脚相连。在开关关断期间,如果检测7脚电压偏低及处于振荡的波谷时,通过芯片内部三个比较器,使得芯片内部的QR_DONE信号由0变为1,从而影响芯片内部的振荡器,开启下一周期。
谐振式开关电源电路图(三)
准谐振电路分为零电压和零电流模式,理论上也有很多方法能实现准谐振变换,但是由于涉及到比较高的电压,很多方法并不适用于无输入变压器的所谓离线开关电源。离开实际的电路很难讨论准谐振的原理,我们首先分析一下常见的反激式开关电源工作过程,然后探讨在反激式开关电源中引入零电压ZVC准谐振的方法。如图2所示为反激式开关电源的基本电路原理图。VT为开关管,T为高频变压器,D1为整流管,Vin为输入的直流电压,经初级绕组LP加到开关管的漏极(集电极),假定负载二极管为理想的开关。Lk为漏感,代表不能祸合传输到次级的磁通量,其存储的能量必须要通过其他的路径释放,另外,漏感Lk会延缓和阻止互感Lm能量的传递,存储在漏感中的能量是开关管关断时产生尖峰的原因。
谐振式开关电源电路图(四)
钨灯电源电路图如图4所示,交流电源从左上角输入,经输入电源滤波器、整流桥、高压电容,转为约130~360 V的直流高压。N14、V30 组成高压侧主电路,将直流高压斩波为脉冲电压,通过变压器耦合,经V12 整流输出,输出电容滤波为直流电压。
启动电路
由于UCC28600的启动电流非常小,典型值为12 μA,可以大大降低启动电阻的功耗,因而启动电阻由三个300 kΩ的贴片电阻串联而成。但由于VDD 引脚需要一个足够的储能电容防止在工作时出现打嗝现象,带来的一个问题是VDD 启动时电压上升过慢,电源启动时间过长。解决方法是VDD 引脚采用小电容,反供绕组采用大电容,两者之间用V34(1N4148)隔离。
遥控电路
遥控电路用光耦TLP181安全隔离,当遥控信号输入CTL 端加电流信号时,光耦输出端导通,通过V33 将UCC28600 的SS 引脚拉低,关闭MOSFET 的驱动信号;通过R32 将VDD 电压拉低,低于UCC28600的启动电压,避免芯片一直处于重启过程。
反馈电路
采用TL431采样输出端电压,通过光耦TLP181隔离后反馈到芯片的输入端。TL431的基准电压为2.495 V,通过R84、R85 的分压,将输出电压设定在11.5 V.由于负载为固定钨灯电源,所以不用考虑电源的瞬态相应,故TL431的补偿电容采用简单的Ⅰ类补偿,电路简单,稳定可靠。
变压器设计
设在最大负载时,UCC28600工作在准谐振模式,其最大占空比发生在最低输入电压时,在固定输入电压和输入功率的情况下:
初级绕组采用2×0.35 漆包线,次级采用125 μm 铜箔,采用三明治绕法,磁芯中心柱开气隙,使ALG 为275 nH/T2.
关于谐振式,开关电源就介绍完了,您有什么想法可以联系小编。