今天小编要和大家分享的是sepic变换器,开关电源相关信息,接下来我将从基于SEPIC变换器的开关电源电路设计,cn104467423a_一种单电感多输出开关电源变换器次级开关占空比信号这几个方面来介绍。

cn104467423a_一种单电感多输出开关电源变换器次级开关占空比信号

cn104467423a_一种单电感多输出开关电源变换器次级开关占空比信号

开关电源具有体积小,重量轻、效率高、成本低等优点,因此开关电源在计算机、仪器仪表、工业设备、通信及家用电器等方面广泛应用。目前市售开关电源多为输出电压固定,调节范围小,可靠性不高等缺点,为此,采用SEPIC变换器设计开关电源,实现低压宽范围无极调压,控制电路简单,可用于无极调压且要求精度高的供电设备。

一、总体方案分析和设计

市电220V首先经过变压器降压后,通过整流、滤波转换为直流电。由于整流、滤波输出后的电压较高,首先进行直流电压的一次降压,然后供给升降压SEPIC变换器,采用电位器实现无极电压调节,通过模数转换芯片采集电压、电流并显示。另外,输出回路增加过流保护。系统整体设计方案框图如图1-1所示。

基于SEPIC变换器的开关电源电路设计

二、开关电源电路设计

(一)SEPIC转换器电路设计

SEPIC转换器又称为升降压转换器,是本开关电源的重要组成部分。选用XL6009开关升降压型DC-DC芯片,固定开关频率400KHZ。超宽输入电压5~32V,超宽输出电压1.25~30V,具有自动升降压功能,在工作范围内任意电压输出均可稳压任意电压输出,最大输出电流为4A。原理图如图2-1所示。

基于SEPIC变换器的开关电源电路设计

由图可知XL6009芯片5脚为反馈端,4脚为电压输入端,3脚为功率输出端,2脚为内部电压调节端,不用可悬空,1脚为接地端。输入端需并联电解电容以消除噪声。由于输入电压最高32V,考虑各种因素,选择35V,220uF的固态电容,并且再并联一个瓷片电容以进行高频去耦。若输出电压最大为30V,需保证有一定的裕量,故选择50V,220uF的固态电容,且再并联一个瓷片电容以配合。因电感器对输出纹波有直接影响,通过计算两个电感均选择47UH。输出电压可调主要是依靠反馈电阻R1,R2的比值,R2为可调电位器,R1为固定阻值电阻。通过调节R2即可调节输出电压,得到5~30V之间的任意宽范围电压。

(二)TLC2543A/D转换采集电路设计

A/D转换电路负责对开关电源输出回路进行电压、电流实时检测,及时将检测值送给主控芯片,再由主控芯片对回路进行相应的保护。A/D转换采集电路图如图2-2所示。由图2-2可知,TLC2543A/D转换芯片11路模拟输入端口外接所要检测的值,电源的正负极接一去耦电容,以减小输入芯片的电源纹波。转换芯片还需个基准电压才能进行正常的A/D转换,此部分可直接板载电压或也可用一精准的基准电压。虽然外围电路简单,但因是一片较为敏感的芯片,尤其在高速转换时,极易受到外界干扰使转换值不准确,这就要求其芯片底部尽可能不要有信号线或电源线接近。

基于SEPIC变换器的开关电源电路设计

(三)电压衰减电路设计

开关电源若输出可调电压5~30V,远远大于A/D转换芯片的模拟输入量,需对其进行降压才能输入给转换芯片,这就采用分压电路。电压衰减电路可分为运放负反馈衰减和分压衰减。通过对比发现分压衰减电路较简单,分压衰减即是通过两个电阻串联对电压进行比例分配。其分压电路如图2-3所示。

基于SEPIC变换器的开关电源电路设计

图2-3分压电路原理图

三、实验结果及分析

(一)开关电源输出电压、电流测量

改变SEPIC电路中R2,测量R2阻值,理论计算输出电压值,通过LCD12864观察实际显示电压、电流值,观察电源输出电压范围和电流,理论计算值与实际测量结果如表3-1所示。

基于SEPIC变换器的开关电源电路设计

由上表观察,设计的开关电源输出电压可在5V到30V范围内无极调压,输出电流最大值2A,误差在允许范围内。引起误差的原因较多,所用A/D转换芯片为12位精度,即每一个数字量对应0.0012V的模拟电压量,很小的波动都会引起显示数值波动。另外,由于电路中本来存在高噪声,大纹波,造成显示的电压值在一定误差范围内波动,这都属于正常现象。

四、结语

通过输出电压电流测量以及可靠性试验测试,设计的无极调压开关电源可以满足5V~30V的电压调节,输出最大电流2A,精度达到0.01,其出现误差都在允许范围内。本电路输出的电压电流都在理论设计允许范围内,达到了预期效果,实现了电源无极调压,为设备提供稳定、可靠的电源。

关于sepic变换器,开关电源就介绍完了,您有什么想法可以联系小编。