今天小编要和大家分享的是核电池简介 核电池原理,接下来我将从简介,原理,外形结构,优缺点,类型,这几个方面来介绍。

核电池简介 核电池原理

核电池又叫“放射性同位素电池”,它是通过半导体换能器将同位素在衰变过程中不断地放出具有热能的射线的热能转变为电能而制造而成。核电池已成功地用作航天器的电源、心脏起搏器电源和一些特殊军事用途。

核电池简介,核电池原理,优缺点等信息资料

简介

核电池又叫“放射性同位素电池”,它是通过半导体换能器将同位素在衰变过程中不断地放出具有热能的射线的热能转变为电能而制造而成。核电池已成功地用作航天器的电源、心脏起搏器电源和一些特殊军事用途。2012年8月7日,美国好奇号火星车抵达火星,核电池寿命可达14年。核电池是利用放射性同位素衰变放出载能粒子(如α粒子、β粒子和γ射线)并将其能量转换为电能的装置。按提供的电压的高低,核电池可分为高压型(几百至几千V)和低压型(几十mV—1V左右)两类按能量转换机制,它可分为直接转换式和间接转换式。更具体地讲,包括直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等。其中直接充电式核电池、气体电离式核电池属于直接转换式,应用较少。目前应用最广泛的是温差式核电池和热机转换核电池。核电池取得实质性进展始于20世纪50年代,由于其具有体积小、重量轻和寿命长的特点,而且其能量大小、速度不受外界环境的温度、化学反应、压力、电磁场等影响,因此,它可以在很大的温度范围和恶劣的环境中工作。

原理

据了解,当放射性物质衰变时,能够释放出带电粒子,如果正确利用的话,能够产生电流。通常不稳定(即具有放射性)的原子核会发生衰变现象,在放射出粒子及能量后可变得较为稳定。核电池正是利用放射性物质衰变会释放出能量的原理所制成的,此前已经有核电池应用于军事或者航空航天领域,但是体积往往很大。过去在电池的研发过程中面临的重大难关之一,就是为了提高性能,电池大小往往比产品本身还大。由美国密苏里大学计算机工程系教授权载完(音)率领的研究组成功为“核电池”瘦身,研发出的“核电池”体积小但电力强。但权载完教授组研发出的核电池只是略大于1美分硬币(直径1.95厘米,厚1.55毫米),但电力是普通化学电池的100万倍。密苏里大学研究团队称他们研制小型核电池的目的是,为微型机电系统或者纳米级机电系统找到合适的能量来源。如何为微型或纳米级机电系统找到足够小的能量来源装置,同微型装置一样是一个热门研究领域。

外形结构

一般核电池在外形上与普通干电池相似,呈圆柱形。在圆柱的中心密封有放射性同位素源,其外面是热离子转换器或热电偶式的换能器。换能器的外层为防辐射的屏蔽层,最外面一层是金属筒外壳。

优缺点

优点:核电池在衰变时放出的能量大小、速度,不受外界环境中的温度、化学反应、压力、电磁场等的影响。核电池提供电能的同位素工作时间非常长,甚至可能达到5000年。缺点:有放射性污染,必须妥善防护;而且一旦电池装成后,不管是否使用,随着放射性源的衰变,电性能都要衰降。

类型

核电池可分为高电压型和低电压型两种类型。按能量转换机制,它可分为九类之多:直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等。目前应用最广泛的是温差式核电池和热机转换核电池。[1]高电压型高电压型核电池以含有β射线源(锶-90或氚)的物质制成发射极,周围用涂有薄碳层的镍制成收集电极,中间是真空或固体介质。以氚为放射源的试验电池,直径为9.5毫米,长度为13.5毫米,电压500伏时电流为160皮安,12年衰降50%(若用锶-90,25年衰降50%)。低电压型低电压型核电池又分为温差电堆型、气体电离型和荧光-光电型三种结构。温差电堆型的原理同以放射性同位素为热源的温差发电器相同,故又称同位素温差发电器。气体电离型核电池是利用放射源使两种不同逸出功的电极材料间的气体电离,再由两极收集载流子而获得电能。这种电池有较高的功率。荧光-光电型核电池利用放射性同位素衰变时产生的射线激发荧光材料发光,再使用光电转换板(太阳能电池板)将荧光转化为电力。这种电池效率较低。

关于核电池,电子元器件资料就介绍完了,您有什么想法可以联系小编。