今天小编要和大家分享的是电动车蓄电池种类 电动车蓄电池蓄电池维护,接下来我将从种类,蓄电池维护,这几个方面来介绍。
电动车蓄电池一般指电动自行车使用的蓄电池,其作用是为电动车提供电源。目前,使用量最大的是阀控密封式铅酸蓄电池,因为铅酸蓄电池成本低,性价比高。其他还有镍氢电池、镍镉电池、锂离子电池、聚合物锂电池等种类。
种类
能够被电动自行车采用的有以下四种动力蓄电池,即阀控铅酸免维护蓄电池、胶体铅酸蓄电池、镍氢蓄电池和锂离子电池。
铅酸蓄电池
已商品化的电动自行车的绝大多数是使用的密封式铅酸蓄电池,使用中不需要经常补充水分,免维护。
其主要化学反应是:pbO2+2H2SO4+pb←充电、放电→phSO4+2H2O+phSO4
铅酸蓄电池充电时变成硫酸铅的阴阳两极的海绵状铅把固定在其中的硫酸成分释放到电解液中,分别变成海绵状铅和氧化铅,电解液中的硫酸浓度不断变大;反之放电时阳极中的氧化铅和阴极板上的海绵状铅与电解液中的硫酸发生反应变成硫酸铅,而电解液中的硫酸浓度不断降低。当铅酸蓄电池充电不足时,阴阳两极板的硫酸铅不能完全转化变成海绵状铅和氧化铅,如果长期充电不足,则会造成硫酸铅结晶,使极板硫化,电池品质变劣;反之如果电池过度充电,阳极产生的氧气量大于阴极的吸附能力,使得蓄电池内压增大,导致气体外溢,电解液减少,还可能导致活性物质软化或脱落,电池寿命大大缩短。
胶体蓄电池
是对液态电解质的普通铅酸蓄电池的改进。它采用凝胶状电解质,内部无游离的液体存在,在同等体积下电解质容量大,热容量大,热消散能力强,能避免一般蓄电池易产生的热失控现象;电解质浓度低,对极板腐蚀弱;浓度均匀,不存在酸分层的现象。
镍氢蓄电池
镍氢蓄电池是九十年代涌现出的电池家族中新秀,发展迅猛。Ni-MH电池的电极反应为:
正极:Ni(OH)2+OH-=NiOOH+H20+e-
负极:M+H2O+e=MHab+OH-Ni(OH)2+M=NiOOH+MHab
它和镍镉蓄电池同属碱性蓄电池,只是以吸藏氢气的合金材料(mh)取代镍镉蓄电池中的负极材料镉cd、电动势仍为1.32v。它具备镍镉蓄电池的所有优异特性,而且能量密度还高于镍镉蓄电池。主要优点是:比能量高(一次充电可行使的距离长);比功率高,在大电流工作时也能平稳放电(加速爬坡能力好);低温放电性能好;循环寿命长;安全可靠,免维护;无记忆效应;对环境不存在任何污染问题,可再生利用,符合持续发展的理念。但是,Ni-MH蓄电池成本太高,价格昂贵。
锂离子电池
锂离子电池是1990年由日本索尼公司首先推向市场的新型高能蓄电池。其优点是比能量高,是当前比能量最高的蓄电池。已经在便携式信息产品中获得推广应用。
锂离子电池被普遍认为具有如下的优点:比能量大;比功率高;自放电小;无记忆效应;循环特性好;可快速放电,且效率高;工作温度范围宽;无环境污染等,因此有望进入21世纪最好的动力电源行列。预计在2006~2012年期间,当锂离子电池进一步发展时,MH/Ni蓄电池的市场份额将缩小。锂离子市场份额将会扩大。已经有采用锂离子蓄电池的电动自行车产品出售。
蓄电池维护
合格的电动车蓄电池经蓄电池厂家出厂后,电池的寿命和性能在某种程度上取决于消费者的使用和维护。
充电器和电池的匹配
电动车蓄电池是被充坏的,而不是用坏的,可见充电器和蓄电池匹配的重要性,这里有两种情况:一是新充电器本身和蓄电池厂家提供的参数不匹配,充电电压过高,电池失水加剧,寿命缩短,更为严重的是充电电流降不到设定的转换电流值,电池温升、充电电流进一步增大,温升厉害,产生热失控,电池膨胀变形,反之充电电压过低,电池长期处于欠充状态,一部分pbSO4始终得不到转换,产生硫酸盐化,电池容量下降,电动助力车续行里程缩短。二是充电器本身的元器件质量差,刚开始使用时,还算匹配,随着消费者充、放电循环使用。充电器本身由于温升,元器件老化,致使充电电压和转换电流产生漂移,电池受到损坏。这里建议消费者和电动车厂家最好购买蓄电池厂家配套的充电器,不要因为贪一时的便宜而充坏了电池,反而得不偿失。
经常、及时补充电
消费者使用说明书所标称的循环使用寿命通常有一种误解,认为充一次电,电池的寿命就减少一次,所以每次都等电池的电能消耗至控制器的保护电压31.5V才开始补充电,殊不知这样不仅保护不了电池,而且缩短了电池寿命。因为正极活性物质pbO2本身的相互结合不牢,而pbO2和pbSO4的摩尔体积有很大差异,放电深度越浅,收缩、膨胀的程度就越低。所以提醒广大消费者,在可能的情况下,应及时给电池补充电。
严禁指示灯显示欠压情况下继续骑行
有些消费者骑行在半路上,指示灯显示欠压的状况后,采取歇一会再骑行一段的方式,这样对电池的危害很大,严重的过放电会使电池盐化或生成铅枝晶,使电池短路,影响寿命。
电动车刚起动、爬坡、超载应尽量助力,雨天骑行,应尽量避免开关和接头淋湿,防止漏电。
关于电动车蓄电池,电子元器件资料就介绍完了,您有什么想法可以联系小编。