涡旋电磁波的另一个重要特点是波束整体呈发散形态,波束中心存在凹陷,中心能量为零,整个波束呈现中空的倒锥形,且绝对值越大,倒锥形对应的圆心角越大。图3 所示的仿真结果很好地描绘了涡旋电磁波的波束形态。

涡旋电磁波在无线通信系统中的应用案例介绍

图3相控阵天线产生的轨道角动量电磁波

4 轨道角动量复用技术在无线通信系统中的应用前景

如前文所述,各阶轨道角动量电磁波之间的相互正交性,为无线通信系统的信息传输提供了一个新的维度,且在理论上可获得无穷的传输能力。但由于涡旋电磁波整个波束呈现中空的倒锥形,电磁波波束发散,且随着传输距离的增大,环形波束的半径越来越大,不得于接收。

对这种电磁波的接收,现有的方法是采用一个大口径的天线(或天线阵)将整个环形波束接收下来。随着传输距离增大,所需接收天线尺寸也越来越大。这种接收方法在长距离传输时变得异常困难,比如10公里的传输,天线口径将达到100米以上;100公里的传输,则需要1公里直径天线[1],鉴于此原因,涡旋电磁波目前还未能应用于远距离传输。

文献[6]实现了仅2.5米长的32 Gbits-1的轨道角动量毫米波通信链路,在X极化和Y极化上均成功传输了轨道角动量为 的涡旋电磁波,共计8个通信信道,误码率低于 ,通信链路框图如图4所示[6]。2016年12月,清华大学航天航空学院航电实验室成功完成世界首次微波频段轨道角动量(OAM)电磁波27.5公里长距离传输实验[1],标志着我国在轨道角动量电磁波的研究上取得了重大的成果与进展,但由于测试资料与分析资料较少,尚无法知晓该传输实验是否涉及多个轨道角动量电磁波的同时传输。