(7)

算法的计算结果见图2。图2(a)显示了每一道数据中都随机出现射频干扰的尖峰;图2(b)是平均后的结果。各道的尖峰干扰已被消除。

(a)波形平均前的数据图 (b)波形平均后的数据图

图2、波形平均前后的数据图

中值滤波不需要重复测量,它的关键在于中值滤波器长度的选择,这将直接影响着数据处理的效果和处理的速度。本实测处理中采用的中值滤波器长度2M +l=51,相当于1.1ns,满足M 》τ;总测量道数为D=166。每道采样点数N=512。具体计算过程如下:

(8)

算法的计算结果见图3,图3(a)中的尖峰是GSM所产生的随机性射频干扰,显然,干扰的分布是随机的,图3(b)是中值滤波的结果,图中这种随机的RFI已经被消除。

(a)中值滤波前的数据图 (b)中值滤波后的数据图

图3、中值滤波前后的数据图

4.2、算法的性能评估

4.2.1、干扰能量抑制比(IESR)

在抑制过程中,将RFI被对消的能量与SPR接收信号中RFI能量的比值,定义为IESR。它表示算法对RFI抑制的整体效果。由式(2)的模型,设接收信号为x(n)(n =0,…,N-1),s(n)为目标回波信号,随机噪声为r(n);抑制RFI后的输出信号为y(n),残余随机噪声为 r’(n),则干扰能量抑制比为