RFID芯片又可分为只读和读写两种。只读芯片包含一个唯一的识别号,且无法更改。但是读写芯片允许更新其存储的信息。我们的方案适用于被动和主动的RFID芯片。由于该方案要求数据更新,只能适用于读写RFID芯片。
2 RFID安全现状
由于计算能力和存储容量受限,传统的密码学安全的协议通常无法实现在RFID系统中。另外,在芯片和读写器之间的开放式通信渠道也容易受到窃听,中间人攻击,Spoofing等。RFID安全问题[1]主要体现在下面几个方面:
① 系统安全:在一个开放式的RFID系统中,攻击者有多种入侵的渠道,可以选择多种攻击方式。例如Dos攻击就可以导致系统瘫痪。一个能够长期健康运行的系统是安全的前提。
② 隐私安全:信息泄露和用户跟踪是RFID隐私安全的主要问题。信息泄漏的解决方法是在RFID上仅仅保存一个ID,而将真正有用的信息存放在后台数据库中,通过ID来提取。但是这依然无法解决可跟踪的问题。用户跟踪问题相对复杂,其解决方法常常需要采用适当的ID刷新机制和数据库RFID同步机制。
③认证安全:与隐私安全相比较,认证安全受到的重视程度小得多。事实上,很多著名的RFID协议直接就忽略了认证安全。因此,大多数的RFID芯片都无法抵抗伪造攻击。只需要简单的阅读目标芯片,以后再重放得到的结果就可以成功克隆目标芯片。在分析RFID系统认证安全时,我们通常假定阅读器和后台数据库之间的通信渠道是安全的(例如通过一个双向SSL协议建立一个加密隧道)。所以我们重点关注芯片和阅读器之间的通信信道。认证可以在两个方向存在,当然双向认证协议相对复杂。
可跟踪的含义:由于RFID标签对任意阅读器的询问都会有响应(有的方案中,阅读器必须认证自身才能得到标签的响应)。可跟踪是指跟踪者能够对多次RFID标签的响应中区分出哪些来自于同一个标签。要区分密码学意义的跟踪和基于物理的跟踪两种概念,物理跟踪是利用算法之外的手段,比如直接跟踪持有者,在持有者身上安装无线电发射装置等等。密码学意义的跟踪对被研究的标签的多次询问之间’的时间、地点不作任何假设,比如第一次询问样本也许来自于根据互联网收集到的零星的交易数据,而第二次询问样本来自于某标签对阅读器的查询应答,跟踪者是否能够区分两次交易来自于同一个标签。