2.5 RFID标签的芯片保护

2.5.1 破坏性攻击及其防范

破坏性攻击主要有版图重构和存储器读出技术两种防范措施。

(1)存储器读出技术

存放密钥、用户数据等内容的存储器不能通过简单的光学照片获得其中的信息。在安全认证过程中,至少要对这些数据区访问一次,因此,可以使用微探针监听总线上的信号获取重要数据。顶层探测器网格是有效防止微探针获取存储器数据的重要手段之一,充分利用深亚微米CMOS技术提供的多层金属,在重要的信号线顶层构成探测器网格能够连续监测短路和断路。当有电时,它能防止激光切割或选择性的蚀刻去获取总线的内容。根据探测器输出,芯片可立即触发电路将非易失性存储器中的内容全部清零。这些网格对于其下的各层金属连线重构也有影响,因为蚀刻不是均匀的,上层金属的模式在下层可见,会给版图的自动重构带来很多麻烦。手动探针的目标尺寸一般在1微米左右,尖端小于0.1微米的探针台价格在几十万美元之上,且极难获得。一个精心设计的网格将使手动微探针攻击难以实施,一般的FIB修补技术也难以逾越。

(2)版图重构

破坏性攻击的一个重要步骤是重构RFID芯片的版图。通过研究连接模式和跟踪金属连线穿越可见模块的边界,达到迅速识别芯片上的一些基本结构,如数据线和地址线。

对于RFID标签芯片的设计来说,射频模拟前端需要采用全定制方式实现,但是常采用HDL语言描述来实现包括认证算法在内的复杂控制逻辑,显然这种采用标准单元库综合的实现方法会加速设计过程,但是也给反向工程为基础的破坏性攻击提供了极大的便利,这种以标准单元库为基础的设计可以使用计算机自动实现版图重构。因此,采用全定制的方法实现RFID的芯片版图会在一定程度上加大版图重构的难度。版图重构的技术也可用于获得只读型ROM的内容。ROM的位模式存储在扩散层,用氢氟酸(HF)去除芯片各覆盖层后,根据扩散层的边缘就很容易辨认出ROM的内容。