图5:在1000秒时间内采集到的内部温度(曲线F2)和振荡器输出频率(曲线F1)的趋势图,它反映了振荡器的热响应特性。
解调幅度调制信号
幅度调制(调幅)信号的包络检测方法需要对信号进行峰值检测。峰值检测可以通过整合绝对值数学函数和这种示波器中称被增强分辨率(ERES)的数字低通滤波器来实现。这样能使精确地提取调制包络形状变得非常容易。图6显示了一个例子。左上边的曲线是待采集的调幅信号。绝对值数学函数的应用如左下边的曲线所示,绝对值提供全波整流效果。
图6:从调幅信号中提取调制包络的步骤。绝对值用于‘检测’信号。ERES滤波可以消除高频载波,从而产生干净的调制包络。
稀疏函数和ERES函数组合用于对绝对值进行低通滤波,形成如右上边曲线所示的调制包络。
稀疏函数能够有选择地减少采集波形的采样率,因此有助于设定作为采样率函数的ERES低通滤波器的截止频率。低通滤波器的截止频率必须远小于载波频率。
右下方格子中的曲线是输入调幅信号的覆盖缩放曲线,提取出的包络显示了该过程的保真性。接下来就可以直接对提取出的包络进行测量和进一步分析。
检测频率、相位和脉宽调制的信号
许多中档示波器都具有轨迹或时间趋势功能,可以根据被测时序参数的周期性变化产生波形。轨迹功能在时间上与源波形是同步的,因此很容易将频率、宽度或相位的变化与源波形关联在一起。这样就提供了解调调频(FM)、调相(PM)或脉宽调制(PWM)信号的一种方法。图7显示了使用时间间隔误差(TIE)参数的轨迹解调调相(PM)波形的一个例子。