今天小编要和大家分享的是测量仪表相关信息,接下来我将从基于TDR技术的阻抗测量系统的设计和应用研究,pcb打样阻抗控制对pcb电路板的重要性这几个方面来介绍。

测量仪表相关技术文章基于TDR技术的阻抗测量系统的设计和应用研究pcb打样阻抗控制对pcb电路板的重要性

测量仪表相关技术文章基于TDR技术的阻抗测量系统的设计和应用研究

作者: Dr. Thorsten Sokoll, Dr. Ove Schimmer

宽带阻抗受控系统的实现给中心电子构建部件——印刷电路板(PCB)的设计师、制造商和质量保证管理人员提出了艰巨的挑战。这个挑战不是源于缺乏电磁设计知识,而且源于PCB行业中巨大的价格压力:也就是说,在开发人员看来完全适合GHz范围时钟速率的理想射频(RF)基材几乎没有使用过。

与此相反,在整个基材中介电常数(DC)不均匀的低成本FR4材料倒是经常使用。另外,将核心材料和半固化片压合成多层PCB经常导致几何上的不匀称,进一步增加了不确定性的来源。然而,为了满足规定的容差,许多PCB制造商提供对线路阻抗的检查服务,继而要求额外的阻抗测试板。这些测试板通常位于PCB边缘,因此只能部分代表分布在整个生产面板上的实际感兴趣传输线的特性。在最坏的情况下,被测的测试板可能在规定范围内,但实际感兴趣的传输线却不满足要求。

阻抗波动经常是不可容忍的

除了材料和生产工艺的特殊变化外,设计参数变化(比如层的改变,到GND平面、PCB边界或其它传输线的距离太短)也时有发生,最终导致不可容忍的传输线阻抗波动。阻抗波动的后果是时钟沿劣化,出现码间干扰,进而造成不可接受的误码率,最终导致性能劣化甚至系统故障。