图5表明了在40 GSa/s取样速率、40 Mpts采集内存、连续采集1 ms时间后对稳定的时钟信号进行的TIE测量,这一时间比竞争对手示波器最长的内存长度要长20倍。1ms采集结果中包括从1 kHz直到示波器带宽的噪声来源,本例中的TDS6154C示波器带宽是15 GHz,1ms采集可以直接查看从15 GHz直到1 kHz的信号抖动和调制效应。

通过图3可以看出TIE测试结果约为1.0ps RMS,但更重要的是最大定时误差的峰到峰值。在1 ms采集中,峰值定时误差指标小于±7ps,周期间误差约为±4ps峰值。如果考虑一下目前仪器的典型使用方式,并看一下基于PLL的TIE测量,误差要降低到±3ps峰值以下,在所示的40M采样点、1ms记录中要降低到500fs RMS以下。实际仪器的JNF小于显示的值,因为信号源中也有噪声。

在当前的高速总线标准中,如FBD、PCI Express和DDR2,示波器可以采集和处理长记录长度,显示周期间相关性,检验参考时钟的调制特性,检验PLL和时钟恢复性能。通过图3可以看到TDS6154C在40 GS/s 40Mpt记录长度上拥有非常好的长期性能。

结论

面对当前各种时钟和数据的抖动测试需求,选择合适的示波器和测试方法是第一步。在进行抖动测试前,需要了解示波器对抖动测试精度影响的关键指标和测试方法,例如JNF、DTA等,以及不同测试参数对测试结果的影响,这是保证高精度抖动测试结果的前提。

抖动测试时不仅需要对示波器整体性能进行评估,例如示波器的带宽,采样率,还需要与之匹配的高采样率下的采集内存长度,这样才能测量从接近DC直流到仪器带宽的抖动,同时保持各种相位和谐波关系,对被测信号的抖动有一个全面的分析。

抖动是一种DC到超高频的现象,当试图发现抖动产生的根源时,必需能够查看整个抖动频谱,从不到千赫兹的电源频率直到几百兆赫的相邻时钟和数据频率干扰。TDS6000B/C和TDS7000B系列示波器不仅提供为您提供了与带宽,采样率匹配的高速存储长度,还提供业内最高的抖动测试精度。