波形可能会有少量“低矮瞬变”,即由噪声产生的接近比较器阀值的特殊边沿,这种特殊瞬变可导致测试错误地估计时钟频率,引起读数错误。一种将时域数据转换成频率数据的方法是FFT。FFT把低矮瞬变作为噪声处理,而不影响时钟测量。

FFT运算将数据便换成幅值,注意最高幅值的信号。因为波形的数据是方波和含有其他分量(大部分是奇次谐波),只要注意幅值频谱的最大值就能够找到最高幅值信号的位置,它就是捕捉到的时钟基波。

图2Nextest公司混合信号波形工具显示160MHz时钟的频域表示方式

a)用33.333MHz捕捉;b)用25.666MHz捕捉

160MHz时钟由33.333MHz和25.666MHz采样率捕捉的频域谱图如图2所示。FFT频率数据分辨率与两个因素有关,即采样率和样本数。傅立叶频率表达方式是fF=fs/N,图2实例有两个取样率,故有两种分辨率:

33.333MHz/32768=1017。25Hz

25.666MHz/32768=783.28Hz

样本数应在测试时间和分辨率之间做出权衡。用来测量160MHz时钟是,拥有比1KHz更好的分辨率就相当不错了,特别是可在33MHz基本速率的测试器上进行测量。如果需要更好的分辨率,则可能需要付出代价,因为由此开始FFT运算时间加大幅增加。

你也可以用24.5Hz分辨率去捕捉一百万个样本,但是,一百万个样本的FFT即使由双Xeon核电脑做运算也不得不用几秒钟时间。而且,在这方面较慢速度的测试仪器更具优势,因为取样较慢时分辨率会更高。

注意频率相交点 当你测量得到两个混叠频率时,就要搜索信号的频率列表和找出频率相交点。对被检查的混叠频率写下代码并推断它们的相交点。