深入讨论下去,混频器输出信号从不代表仅仅一个(或仅仅两个)频率的输入信号;获得这样的输出信号意味着中频带宽为零。中频带宽,亦即频谱分析仪的RBW(分辩率带宽),总是大于零的。你可选择的最小RBW就是频谱分析仪的优值。然而,如果你刻意选择RBW为零,那么所有扫频频谱分析都需要无穷多的时间,因为一个零带宽的带通滤波器需要无穷多的时间来对它的输入信号变化作出反应。
解决映频问题的一个办法是采用多次变频,频谱分析仪通常都有3个中频级。一个频率覆盖范围为30MHz~3GHz的频谱分析仪可能首先将输入信号频率变换为大于3GHz,这就使所有不需要的映频都高于频谱分析仪的输入频率范围,所以一个固定截止频率低通滤波器就可将它们滤除掉。如果第一个中频,比如说为3.4GHz,则本机振荡器的扫描范围为3.43~6.4GHz,映频频段的覆盖范围为6.83~9.8GHz。这样做的另一个好处是,减小了最高fLO对最低fLO的比值。在本例中,这一比值从大于6个倍频程(40 .7~3010.7GHz)减少到小于1个倍频程(3.43~6.4GHz)。
把频域变换成时域
在扫频分析仪的输入端,整个仪器输入频率范围内各个频率的信号可能同时存在,然而,在混频器的输出端,这一频率范围就大大地缩小了,因为当扫描使扫频分析仪在有关频段内调谐时,这些信号——变换成接近fIF频率——不是同时存在,而是按时间顺序出现的。因此,在第一混频器之后,扫频分析仪就不需要非常宽的带宽,从而大大简化了扫频分析仪大部分电路的设计。另一方面,现代通讯信号的存在时间极其短暂,而且占空比很小,从而要求扫频分析仪能或多或少地连续扫描很宽的频段。
现在已有这样的仪器。制造商们给它们起了各种各样的名字,其中包括信号分析仪,矢量信号分析仪,无线通讯分析仪。这类仪器全都大量采用DSP技术,而且愈来愈多的频谱分析仪都是如此。然而,一般来说,采用DSP技术的频谱分析仪和信号分析仪在规范和预计的应用上则大不相同。信号分析仪能以较快的速度捕获数据,能存储具有很长的数字化时域数据记录,能处理矢量(相位及幅度),并能对按照诸如60QAM(64级正交调幅)格式的数字调制的信号进行复杂分析。频谱分析仪通常比信号分析仪小巧、价格也低,但却具有大得多的动态范围。