4.3 分层逐步标定法
近年来,分层逐步标定法已成为自标定研究中的热点,并在实际应用中逐渐取代了直接求解Kruppa方程的方法。分层逐步标定法首先要求对图像序列做射影重建,再通过绝对二次曲线(面)施加约束,最后定出仿射参数(即无穷远平面方程)和摄像机内参数。分层逐步标定法的特点是在射影标定的基础上,以某一幅图像为基准做射影对齐,从而将未知数数量缩减,再通过非线性优化算法同时解出所有未知数。不足之处在于非线性优化算法的初值只能通过预估得到,而不能保证其收敛性。由于射影重建时,都是以某参考图像为基准,所以,参考图像的选取不同,标定的结果也不同相。
4.4 基于二次曲面的自标定方法
Triggs是最早将绝对二次曲面的概念引入自标定的研究中来的,这种自标定方法与基于Kruppa方程的方法在本质上是相同的,它们都利用绝对二次曲线在欧氏变换下的不变性。但在输入多幅图像并能得到一致射影重建的情况下,基于二次曲面的自标定方法会更好一些,其根源在于二次曲面包含了无穷远平面和绝对二次曲线的所有信息,且基于二次曲面的自标定方法又是在对所有图像做射影重建的基础上计算二次曲面的,因此,该方法保证了无穷远平面对所有图像的一致性。
5、 结束语
本文对基于机器视觉的摄像机标定理论与各种方法进行了研究。传统的摄像机标定需要标定参照物。为了提高计算精度,还需确定非线性畸变校正参数。而新的比较符合摄像机成像物理模型且又便于分析计算的实用模型是条另辟蹊径的发展方向。摄像机自标定相对于传统方法有更好的灵活性和实用性,通过十多年的不懈努力,理论上的问题已基本解决,目前研究的重点是如何提高标定算法的鲁棒性以及如何很好地用这些理论来解决实际视觉问题。为了提高鲁棒性,建议更多的使用分层逐步自标定方法,并应对自标定的结果进行线性优化。