支架上装有测量单元,同时具备减震和连续供气自动调平功能以保持稳定性。测量单元带有一块花岗岩底板,用于最大限度增加刚性、减少振动,从而确保测量稳定性。

底板上安装有XYZ自动样品台、0.01 μm分辨率激光尺、显微镜和光线传输单元。测量单元的外罩可防止自动操作期间光线从上方渗透进入机器内部。XYZ自动样品台的每根轴的行程距离分别为X轴100 mm、Y轴和Z轴4 mm。

机器的电机上装备有编码器,有助于降低理论驱动值与实际移动量之间的误差。每个样品台都采用独立的结构,排列顺序为ZYX。激光尺使用的两组光学镜安装在X轴的最顶部,用于检测水平行程距离、垂直位移和Z轴移动。

然而,机器现有的激光干涉测量装置的测量精度有限,难以满足未来新一代光学通信组件提出的更高的校直精度要求。

解决方案

传统的激光干涉测量方案需要用到激光头、干涉镜、反射镜和探测器等,这些组件都是彼此独立的。激光光束通过由分光镜和光束转向镜组成的复杂网络在这些组件之间传输,因此整个系统庞大且复杂,安装、准直和维护的过程困难且耗时。

使用创新的雷尼绍RLE10激光尺,这类系统缺点便可迎刃而解。该激光尺的先进技术可最大限度减少多种来源的误差,从而实现更高的测量精度。

RLE10使用光纤将激光光束直接传输到远距离的发射装置,该装置也具有所有必需的干涉镜组和干涉条纹探测器。这一方法可最大限度减少系统复杂性和集成时间。

由于激光干涉测量所使用的波长决定了可以实现的测量分辨率,因此凭借633 nm的工作波长,RLE10可轻松实现固有的高分辨率,且电子细分误差或插值误差可降至最低。

结果

集成雷尼绍RLE10激光尺后,机器校直精度、安装便利性和系统稳定性均得到提升。YGN-590-MT多芯光纤连接器检测机的定位精度因此显著提高,分辨率从0.1 μm提升至0.01 μm。