最后所有CELL对应的向量构成整个图像的Hog描述子,如图3(b)所示,图像由16个CELL组成。
2.2 SVM分类器的训练和人头检测
人头检测的分类器选择高斯内核的支撑向量机(SVM)。SVM分类器的训练分两次进行,第一次是使用人头居中的正样本和从不包含人头对象的图像(源负样本)中取样得到的负样本中训练出基本分类器。第二次是采用基本分类器对所有源负样本进行密集扫面检测,将其中检测错误的子图像归为困难负样本,然后将之前的正样本和负样本与困难样本一起对基本分类器进行二次训练。在对源负样本进行密集扫描时,不仅扫描步长要小,而且还要加入尺度的变化(尺度步长可设为 1.5 或者2),尽可能地获取源负样本的局部信息和全局信息。这样得到的负样本才够健壮,对二次训练后检测器的效果也提升得更加全面。
SVM分类器的训练阶段,训练用正样本和负样本的尺寸固定,大小为32×24。在人头检测阶段,由于距离等因素,导致目标(人头)大小变化较大,本文采用训练模板大小不变而只缩放待检测图像的方法实现目标的多尺度检测,检测结果如图4(a)所示。
3、 Mean-shift跟踪计数
利用HOG特征,只能实现单幅图像中人头的检测。要完成人员计数,必须利用多帧图像信息,既要检测出图像中新出现的目标,又要利用目标跟踪技术,确定连续多帧图像中的同一个目标,实现人员统计计数。