E-step是集群分配,这一步通过详尽的探索来执行。M-step是码字(codeword)更新,这一步通过显式计算最小二乘问题的解来完成,实际上就是在E-step和M-step交替之前,计算x tilde的伪逆。需要注意的是在E-step之后某些集群可能为空。对于卷积层情况又是如何呢?在完全连接层,这一方法适用于任何矢量集,所以如果将相关的4D权重矩阵分割成一组向量,该方法就可以应用于卷积层。

分割4D矩阵的方法有很多,标准就是要最大化矢量之间的相关性,因为当矢量高度相关时,基于矢量量化的方法效果最好。就像这样,在空间上量化卷积滤波器以利用网络中的信息冗余,不同颜色代表拥有不同码字的子向量。二、网络量化,接下来,就涉及到对整个神经网络的量化。首先,这是自下而上的量化,从最低层开始,到最高层结束。这也就是所谓的用非压缩的教师网络引导学生网络的压缩。主要包括以下两个步骤:

学习码字,恢复该层的当前(current)输入激活,即通过量化后的低层转发一批图像而获得的输入激活。使用这些激活量化当前层。微调码字,采用Hinton的distillation方法微调码字,以非压缩网络作为教师网络,当前层之前的压缩网络作为学生网络。在这一步骤中,通过对分配给指定码字的每个子矢量的梯度求平均,来完成码字的精细化。更确切地说,是在量化步骤之后,一次性修复分配。

接下来,就剩下最后一步,全局微调所有层的码字,以减少残余漂移。同时更新BatchNorm层的统计数据。全局微调使用的是标准的ImageNet训练集。小体积,高精度,研究人员用Bit Goes Down量化了在ImageNet数据集上预先训练好的vanila ResNet-18和ResNet-50。在16GB的 Volta V100 GPU上跑了一天之后,终于到了展示成果的时候。首先,是跟标准ResNet-18和ResNet-50的比较。

对于ResNet-18,在29倍压缩的情况下,模型大小缩小到了1.54MB,而top-1准确率仅比标准模型降低了不到4%。ResNet-50上模型大小略大一些,但也达到了5MB左右,准确率同样保持在一个可以接受的水平。跟模型压缩界的前辈相比,Bit Goes Down表现出了它的优势,虽然在1MB的指定大小中败下阵来,但在5MB的比拼中,新方法优势明显,准确率提升了将近5个百分点。

这意味着压缩后的模型获得了非压缩ResNet-50的性能,同时还只有5MB大小。Bit Goes Down在图像分类上表现不俗,在图像检测方面又如何呢?研究团队又压缩了何恺明的Mask R-CNN。这回用上了8块V100 GPU来进行训练。在压缩了25倍的情况下,压缩模型的Box AP和Mask AP都只下降了4左右。这表现,着实有些厉害。Facebook表示,Bit Goes Down这样的压缩算法将推动虚拟现实(VR)和增强现实(AR)等技术的进一步发展。