从传感器角度出发,有多种方法减小嵌入式视觉系统功耗而不损采集帧率。最简单的方法是通过尽可能长时间使用待机或闲置模式,在系统级最小化传感器本身的动态操作。待机模式通过关闭仿真电路,把传感器的功耗降低到工作模式的10%以下。而闲置模式则可把功耗减半,并让传感器在数微秒内重新启动获取图像。

而在传感器设计集成节能的另一个方法是采用先进光刻节点技术。技术节点越小,转换晶体管所需的电压便越小,由于功耗与电压成正比,这样就能降低功耗。所以10年前使用180nm技术生产的像素不单把晶体管缩小到110nm,同时也把数字电路的电压从1.9伏降到1.2伏。下一世代的传感器将使用65nm技术节点,使得嵌入式视觉应用更省能。

最后一点是,通过选择合适的图像传感器,可以在某些条件下降低LED灯的能耗。有一些系统必须使用主动照明,例如三维地图生成、动作停顿、或是纯粹使用顺序脉冲指定波长来提高反差。在这些情形下,减低图像传感器在低亮度环境下的噪声便能实现更低的功耗。减小了传感器噪声,工程人员便可决定减小电流密度强度,或是减小集成进嵌入式视觉系统的LED灯数目。 在其他情况下,当图像捕获和LED闪烁由外部事件触发时,选择适当的传感器读出结构可以显著节省电能。 使用传统卷帘快门传感器,帧全曝光时LED灯必需全开,而全局快门传感器则允许只在帧的某部份开动LED灯。所以如使用像素内相关双采样(CDS)应用下,以全局快门传感器替代卷帘快门传感器就可以节省照明成本,同时仍保持与显微镜中使用的CCD传感器一样低的噪声。

3. 片上功能为应用程序设计的视觉系统铺平了道路

嵌入式视觉的一些偏锋延展概念,引导我们对图像传感器进行全面定制,以3D堆叠方式集成所有处理功能(芯片上的系统) 以实现优化性能和功耗。不过,开发这一类产品的成本十分高昂,能够达到这一集成水平的全定制传感器长远来说并非完全不可能,而现在我们正处于一个过渡阶段,包含将某些功能直接嵌入到传感器,以减省计算负载和加快处理时间。

例如在条形码阅读应用,Teledyne e2v公司已拥有专利技术,将包含一个专有条形码识别算法的嵌入式功能加进传感器芯片,这算法可以找出每一帧幅内的条形码位置,让图像信号处理器只需聚焦于这些范围,提高数据处理效率。

嵌入式视觉现在处于发展的哪个阶段

图2 Teledyne e2v Snappy五百万像素芯片,自动识别条形码位置