今天小编要和大家分享的是控制,MCU相关信息,接下来我将从独立键盘的检测原理及程序实现方法,avr单片机对外部ram的扩展这几个方面来介绍。

控制,MCU相关技术文章独立键盘的检测原理及程序实现方法avr单片机对外部ram的扩展

控制,MCU相关技术文章独立键盘的检测原理及程序实现方法

键盘是单片机应用系统中重要的输入设备,是实现人机对话的纽带。键盘主要分编码键盘和非编码键盘两大类,其中键的开闭的识别由硬件编码器来实现的称为编码键盘,如计算机键盘。而靠软件编程来识别键的开闭的称为非编码键盘,单片机系统中常用的键盘为非编码键盘。

键盘都是由一个一个小按键构成的,按键实际上就是一个开关元件,单片机系统中常用的按键主要有自锁按键和非自锁按键,分别如图1、图2所示。

独立键盘的检测原理及程序实现方法

非编码键盘通常又分为独立键盘和矩阵键盘两大类。所谓独立键盘是指按键在与单片机相连时,每一个按键都与一个单片机单片机的I/O口相连,如图3所示;而对于一些应用系统中若需要较多按键时,采用独立键盘的连接方法,则比较耗费单片机的I/O口,此时我们一般会用到矩阵键盘,如图4所示,16个按键排成4行4列,称为4X4矩阵键盘,如按独立按键法,需要16个I/O口,而按图4的接法只需要8个I/O.

独立键盘的检测原理及程序实现方法

独立键盘的检测原理及程序实现方法

由于在单片机在应用系统中,更多的会用到独立键盘,加之两者的检测原理基本相似,所以这一节里我主要讲解独立键盘的检测原理及程序实现的方法。

1、 按键的检测原理

按键与单片机的连接如图5所示,按键的一端与地相连,另一端直接与单片机的I/O口相连。此时我们在程序中先给I/O口赋值高电平,然后不断的检测I/O口电平的变化。当按键没有被按下时,此I/O口的电平一直为高;当按键被按下时,由于按键的另一端直接与地相连,相当于低电平,此时我们从I/O口读出的即为高电平,程序一旦检测到I/O口由高电平变为低电平时,说明按键被按下,此时马上执行相应的动作,这就是按键检测的原理。