11 for(count=0;count
13 {
14 value_buf[count]=get_data();
17 delay();
18 }
20 for(i=0;i
22 {
k=i;
24 for(j=i+1;j
26 if(value_buf[j]
28 temp=value_buf[k];
30 value_buf[k]=value_buf[i];
32 value_buf[i]=temp;
34 }
36 return value_buf[(N-1)/2];
37 }
位值滤波能有效地克服偶然因素引起的波动或采样器不稳定引起的误码等脉冲干扰。对温度、液位等缓慢变化的被测参数采用此算法能收到良好的滤波效果,但对于流量、压力等快速变化的数据,不宜采用中位值滤波。
1.2 算术平均滤波
算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。这种信号的特点是信号本身在某一数值范围附近上下波动,如测量流量、液位时经常遇到这种情况。算术平均滤波法是要按输入的N 个采样数据,寻找这样一个Y,使得Y 与各个采样值之间的偏差的平方和最小。
具体实现此算法的子程序如下:
1 #define N 12
2 char filter()
5 {
7 int count;
9 int sum=0;
10 for(count=0;count
13 {
15 sum+=get_ad();
16 delay();
17 }
18 return (char)(sum/N);
19 }
算术平均滤波适用于对一般具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值范围附近做上下波动,在这种情况下仅取一个采样值做依据显然是不准确的。算术平均滤波对信号的平滑程序完全取决于N,当N较大时,平滑度高,但灵敏度低;当N较小时,平滑度低,但灵敏度高,应视具体情况选取N,以便既少占用计算时间,又达到最好的效果。
1.3 加权平均滤波
在算术平均滤波和移动平均滤波中,N次采样值在输出结果中的权重是均等的,取1/N。用这样的滤波算法,对于时变信号会引入滞后,N值越大,滞后越严重。为了增加新采样数据在移动平均中的权重,以提高系统对当前采样值中所受干扰的灵敏度,可采用加权平均滤波,它是移动平均滤波算法的改进。
加权平均滤波是对连续N次采样值分别乘上不同的加权系统之后再求累加和,加权系统一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的辨识。各个加权系统均为小于1的小数,且满足总和等于1的约束条件。这样,加权运算之后的累加和即为有效采样值。
为方便计算,可取各加权系数均为整数,且总和为256,加权运算后的累加和除以256,即舍去低字节后便是有效采样值。具体的样例子程序如下:
1 //code数组为加权系统表,存在ROM区。
2 #define N 12
3 char code jq[N]={1,2,3,4,5,6,7,8,9,10,11,12};