3 提高系统可靠性的综合设计方法

在一个具体的系统设计中,为提高系统的稳定性和可靠性,往往要综合采用多种措施来达到满意的效果,这是全面提高系统可靠性的必由之路。系统不同,其具体的控制对象就可能不同,运行环境也会千差万别,因而其面临的主要干扰问题就不同,采取的措施也就不同;但仅采取某项措施就希望全面提高系统的可靠性常常是不现实的,而要针对主要问题综合采取多项措施联合提高可靠性。

4 设计实例

下面给出一个设计实例,以进一步说明提高系统可靠性设计的一些常用方法。

在某卫星通信系统中,为了降低系统的相噪,要求其前置低噪声放大器(LNA)的工作温度保持恒定(40℃);而该放大器在野外工作的环境温度范围为一40~+60℃之间,因此必须把该放大器放入特制的恒温箱中。该恒温箱应具有既能制热又能制冷的功能。制热采用电阻丝加热器,制冷采用半导体制冷片来实现。为防止恒温箱因控制器失灵而造成温度失控甚至损坏低噪声放大器,破坏整个系统的正常工作,恒温箱的设计主要采用了主从双CPU系统来提高系统的可靠性。除此以外,还采用了如电源监控技术、看门狗技术、软件陷阱技术、光电隔离技术等措施综合提高系统的可靠性。该系统的结构框图如图1所示。

单片机系统失效的主要原因分析

主CPU负责加热器、制冷片及箱内箱外温度的检测,担负主要的控制任务。主CPU选AT89S52单片机,内含看门狗定时器,在芯片外加MAX707作为电源监控电路;除可以向主CPU提供可靠的复位信号以外,还可以检测掉电中断申请信号,当掉电发生时及时保存现场数据。加热棒使用交流220V供电,制冷片采用15V直流稳压电源供电。为防止高电压强电流对弱电部分的干扰,主CPU

产生的控制信号都经过光电隔离送向驱动电路,以提高系统的可靠性。

从CPU选AT89C2051,主要负责对主CPU工作情况的监控及电源供电电压的监视。当掉电现象发生时,AT89C2051内的电压比较器会检测到这种变化,并由后备电池供电,通过485口向监控台报告。

主从CPU之间的监控是相互的。主从CPU通过它们之间的I/O口线握手,彼此监视对方的工作状态,并采取相应的处置措施,保证系统对外操作的安全。通过上述措施的实施,系统的可靠性非常出色,自投入运行以来一直稳定可靠,无不明原因的死机或失控现象发生,充分说明了系统设计的成功。而根据以往的经验,如不采用上述的综合设计方法,这样的系统通常在连续运行1~2周后就很可能产生问题。