因此,输出电流的平均值为:

控制芯片U1通过检测原边开关电流,控制原边开关电流峰值Ipk恒定,同时控制开关占空比,保持输出二极管D1的导通时间Tons和关断时间Toffs比例恒定,实现了输出电流的恒定。

图2中,电阻R1,R9为芯片U1的启动电阻,连接到芯片的VCC脚,在电路上电后提供芯片一定大小的启动电流。L3为辅助绕组,与D5,C7构成芯片U1的供电回路。同时,L3辅助绕组电压经过电阻R6,R7分压,连接到芯片的FB脚,作为输出电压的检测和保护电路。R2为开关Q1的电流检测电阻,连接到芯片的CS脚,即U1的电流采样脚。芯片U1的2脚GND连接到地电位,1脚为输出驱动脚,输出一定脉宽的PWM信号,控制开关Q1的开通和关断。

图2中变压器T1采用EE16磁芯,有3个绕组,原边绕组L1电感量1mH,L1,L2和L3匝比为100:100:28。电路设计工作频率65KHz。

实验结果

基于以上电路设计,实验测试相关性能指标结果如下:

基于AP3766芯片控制的LED驱动电路设计

传导EMI测试结果如图4所示:

基于AP3766芯片控制的LED驱动电路设计

图4传导EMI测试结果

测试结果表明,在85V到265V宽输入电压范围下,该电路功率因数PF约为0.8,效率大于85%,满足EMI标准等LED驱动电源各项规格要求。

结论:

本文提出一种基于AP3766的高功率因数非隔离LED驱动电源方案,控制方式简单新颖,实现了全电压范围内的高功率因数,高效率和恒流输出,具有元器件数量少,体积小,性价比高等突出优点,同时满足LED驱动电源的高功率因数,高效率,符合电磁兼容EMC标准,高电流控制精度,高可靠性、体积小、成本低等一系列要求。

责任编辑;zl

关于控制,MCU就介绍完了,您有什么想法可以联系小编。