如图 5?5所示,基于CMSIS标准的软件架构主要分为以下4层:用户应用层、操作系统及中间件接口层、CMSIS层、硬件寄存器层。其中CMSIS层起着承上启下的作用:一方面该层对硬件寄存器层进行统一实现,屏蔽了不同厂商对Cortex-M系列微处理器核内外设寄存器的不同定义;另一方面又向上层的操作系统及中间件接口层和应用层提供接口,简化了应用程序开发难度,使开发人员能够在完全透明的情况下进行应用程序开发。也正是如此,CMSIS层的实现相对复杂。
图 5?5 CMSIS标准的软件架构
层主要分为以下3 个部分:
(1) 核内外设访问层(CPAL,Core Peripheral Access Layer):该层由ARM 负责实现。包括对寄存器名称、地址的定义,对核寄存器、NVIC、调试子系统的访问接口定义以及对特殊用途寄存器的访问接口(例如:CONTROL,xPSR)定义。由于对特殊寄存器的访问以内联方式定义,所以针对不同的编译器ARM 统一用来屏蔽差异。该层定义的接口函数均是可重入的。
(2) 片上外设访问层(DPAL, Device Peripheral Access Layer):该层由芯片厂商负责实现。该层的实现与CPAL 类似,负责对硬件寄存器地址以及外设访问接口进行定义。该层可调用CPAL 层提供的接口函数同时根据设备特性对异常向量表进行扩展,以处理相应外设的中断请求。
(3) 外设访问函数(AFP, Access Functions for Peripherals):该层也由芯片厂商负责实现,主要是提供访问片上外设的访问函数,这一部分是可选的。
对一个Cortex-M 微控制系统而言,CMSIS 通过以上三个部分实现了:
l 定义了访问外设寄存器和异常向量的通用方法;
l 定义了核内外设的寄存器名称和核异常向量的名称;
l 为RTOS 核定义了与设备独立的接口,包括Debug 通道。
这样芯片厂商就能专注于对其产品的外设特性进行差异化,并且消除他们对微控制器进
行编程时需要维持的不同的、互相不兼容的标准需求,以达到低成本开发的目的。CMSIS中的具体文件结构如表 5?6所示。
表 5?6 CMSIS文件夹结构
CMSIS
Core
Documentation
CMSIS文档
CM3
Startup
arm
MDK ARM编译器启动文件
startup_stm32f10x_hd.s: 大容
来源;21ic
关于控制,MCU就介绍完了,您有什么想法可以联系小编。