3)A/D转换电路:采用ICL7109组成A/D转换电路,ICL7109是INTEL公司的产品。ICL7109采用双积分式工作原理,转换速率不高,但可满足本系统对采样速率的要求。因芯片具有较强的抗干扰特性,对于保证系统的检测与控制精度,是非常有利的。ICL7109的分辨率为12位;转换速率为7.5

基于AT89C51单片机的温度检测系统硬件电路设计

图2 信号检测放大及A/D转换电路

次/秒(时钟为3.58MHz);转换后以12位二进制码输出。A/D转换器直接与单片机Pl口、P0口相连,转换后的12位数据直接由P0口输入而存入片内RAM中。12位数据需分两次读入,MCS一51的P1.0、P1.1、P1.2分别与A/D转换器的运行/保持输入端(RUN/HOLD)、字节使能端(HBEH、HBEL)以及A/D转换器的状态输出端(STATUS)相连接,片选端(c肌0AD)与P2.2相连,在片选和字节使能信号的控制下可以直接读取转换后的数据。

1.2控制温度设定电路

采用AT89C5 1的P1.7~P1.4设置4个开关K4-K1分别表示降温控制开关、设置控温的后期、中期、前期开关。当KI合上为0时,表示设置控制温度为370℃(触媒使用的前期温度);K2合上时,设置控制温度为380℃(触媒使用的中期),K3合上时,设置控制温度为390℃(触媒使用的后期);K4合上时,停止加热,系统进入降温过程。通过软件检测P1.7~P1.4的状态,发现某开关合上,则设置对应的控制温度,并转入相应的工作过程。

1)功率放大及执行电路:由于步进电机具有快速启停、精确步进以及直接接受数字量的特点等,本系统采用步进电机作为执行元件。控制系统采用步进电机作为执行元件,其作用是将计算机送出的电脉冲信号转换为相应的机械位移,它具有以下主要特点:(1)步距值不受各种干扰因素的影响,转子运动的速度主要取决于电脉冲信号的频率,而转子的总位移量取决于总脉冲的个数;(2)误差不会长期积累,转子每转动一圈积累误差为零;(3)反应性能好。启动、停车、反转及其他任何运动方式的改变都在少数脉冲内完成。在一定的频率范围内运行时,任何运行方式都不会丢失一步。

2)执行控制系统的组成:如图3所示。步进电机的控制系统主要由步进电机控制器、功率放大器及步进电机组成。步进控制器包括环形脉冲分配器、控制逻辑及正反转控制门组成,其作用是把输入脉冲信号按一定顺序进行分配,再通过功率放大送入步进电机绕组,以驱动步进电机转动。

基于AT89C51单片机的温度检测系统硬件电路设计