框 5为闪变的统计分析,即根据框 4输出的 S(t)值进行在线统计分析。将 S(t)值分级并用积累概率函数 CPF的方法进行分析,在观察期内( 10min),对上述信号进行统计,利用 5个规定值,计算得出短时闪变值,表达式如下
2 闪变分析仪的硬件结构闪变仪的硬件结构大致分为 3个部分。结构如图 2所示。
第一部分为前端信号调理及 AD采集电路,前端信号调理电路将输入的工频信号调整到-10V~+10V的范围,并经过 LM2902集成运放器提高输入阻抗后再输入AD。AD芯片采用 AD7656,AD7656为 6通道 16位、快速、低功耗、逐次逼近型ADC,输入范围可选择-10V~+10V或-5V~+5V。其内核采用 4.5V至 5.5 V单电源供电,最高采样率可达 250 kSPS。该器件内置低噪声、宽带宽采样保持放大器,可处理最高 8 MHz的输入频率,在本案中设置其采样率为400Hz,用 DSP的定时器模块定时触发 AD采样。
第二部分为 DSP相关电路,包括电源模块电路,复位电路,晶振电路,SCI模块,存储模块等。DSP与 AD的硬件连接如图 3所示。
AD7656内部含 2.5V参考电压同时也支持外部参考电压,复位时默认为外部参考,本案设计使用的是内部参考电压。当 H/SSEL=0且 REFEN=1时,内部2.5V参考电压启用,再将 RANGE引脚接低电平,AD的输入范围便为±4×VREF =±10V 。
DSP2812的定时器发出定时中断并由 GPIOA0引脚输出一个上升沿启动 AD转换,在转换期间 BUSY信号为高电平,转化完成后 BUSY变为低电平,所以可通过 BUSY向 2812发出下降沿外部中断请求,并在此中断请求处理函数中完成对数字信号的存储。
第三部分为实时显示部分,由 ARM模块实现,ARM核心采用三星公司 s3c2410芯片,外部扩展了 LCD触摸屏,用户可通过触摸屏控制闪变仪工作。
3 闪变分析仪的软件设计
下面介绍 DSP软件算法结构。在采样率为 400Hz时,若经 10分钟后才对数据(约 234k)进行处理,数据量很大,处理过程将很慢,严重影响实时性能。本文采用分时处理方法, AD采集 6s的数据后,马上对这 6s的数据进行处理,算出此 6s的瞬时闪变值并进行存储,当处理掉 100个 6s也即计算时间到达 10分钟时,将对这 10分钟内的瞬时闪变值进行统计分析,最终得到 5个特征值后代入公式得到短时闪变值。图4为程序流程图。其中ARM模块承担着开始 /结束控制信号的发送和最终结果的显示等终端功能的实现,用户可通过触摸屏发送开始/结束控制信号, DSP在收到信号后将开始/结束定时器工作,进而开始/结束 AD采样。