今天小编要和大家分享的是MEMS,传感技术相关信息,接下来我将从针对一字型悬臂梁RF MEMS开关的两种降低驱动电压RF MEMS开关方法,m57962l驱动大功率igbt模块时的典型电路这几个方面来介绍。
MEMS,传感技术相关技术文章针对一字型悬臂梁RF MEMS开关的两种降低驱动电压RF MEMS开关方法
作者:欧书俊,张国俊,王姝娅,戴丽萍,钟志亲(电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 611731)
本文针对一字型悬臂梁RF MEMS开关,提出了两种降低驱动电压RF MEMS开关的方法,分别为:增大局部驱动面积和降低弹性系数。根据这两种方法设计了4种形状的悬臂梁开关,分别为增大局部驱动面积的十字型梁,降低弹性系数的三叉戟型、蟹钳型和折叠型梁。在梁的长度、厚度和初始间隙等参数一致的情况下,通过CMOSOL软件建模仿真得到了这4种悬臂梁的驱动电压,分别为7.2 V、5.6 V、3.8 V和3.6 V。相比于驱动电压为9 V的一字型悬臂梁,优化后的这4款开关可以降低驱动电压。并且低弹性系数方面,比增大局部驱动面积的开关效率要高。
RF MEMS开关无论是在民品还是军品都有着广泛的应用,相对于传统的PIN二极管开关和GaAs开关有着巨大的优势,并具有低插入损耗、高隔离、线性度极好、低功耗、体积小和低成本的优点[1-2]。
目前,RF MEMS开关存在着较高的驱动电压,静电MEMS开关通常需要高达30~80 V的驱动电压[3]。在通讯系统中,就需要利用变压器将输入很低的控制电压提升到所需的驱动电压,这限制了RF MEMS开关的应用以及单片式微波集成电路(MMIC)的集成。如果降低了MEMS开关的驱动电压,不但可以扩大RF MEMS开关的应用范围,而且可以增强开关的性能,因此低驱动电压的开关也能应用于MMIC中[4]。
悬臂梁开关相比于固支梁开关具有更低的驱动电压。本文在现有研究的基础上,提出了增大局部驱动面积和低弹性系数的悬臂梁来减小驱动电压的方法。通过CMOSOL软件建模对不同形状的悬臂梁开关进行仿真验证。在梁的长度、厚度和初始间隙等不变的情况下,得到了通过增大局部驱动面积和降低弹性系数的悬臂梁可以降低驱动电压,并且低弹性系数的悬臂梁对降低驱动电压的效率更高。
1 开关工作原理
图1为悬臂梁开关原理示意图,其中悬臂梁左端固定,右端是可动的悬空结构。悬臂梁和驱动电极之间形成平行板电容,当驱动电极未施加电压时,悬臂梁处于初始位置,开关处于断开状态;当驱动电极施加电压时,梁上会产生静电力,并在静电力的作用下向下运动,在静电力足够大时,悬臂梁的触点金属和信号电极接触,左右信号电极导通,此时开关处于导通状态。为了避免开关导通时直流驱动电路对微波通路的影响,通常在驱动电极上沉积一层绝缘层。