今天小编要和大家分享的是MEMS,传感技术相关信息,接下来我将从深度传感器的三种技术对比分析,压力传感器 电压这几个方面来介绍。

MEMS,传感技术相关技术文章深度传感器的三种技术对比分析压力传感器 电压

MEMS,传感技术相关技术文章深度传感器的三种技术对比分析

深度传感器的三种技术

目前人们如果想探测环境深度信息,主要依赖于三种技术,分别是相机阵列, TOF(time of flight)技术,以及基于结构光的深度探测技术。

结构光:

接收器使用激光光源投射目标物,检测反射目标物的变形,以基于几何形状计算深度图。它必须扫描整个平面以获得需要时间的深度图,因此它是非常准确的。但是,此方法对环境亮度敏感,因此通常仅在黑暗或室内区域使用。

飞行时间(ToF):

ToF主要有两种方法。第一个很简单:激光源发出一个脉冲,传感器检测到该脉冲在目标物体上的反射,以记录其飞行时间。知道了光的恒定速度后,系统可以计算出目标物体的距离。为了确保高精度,脉冲周期必须短,这导致较高的成本。另外,需要高分辨率的时间数字转换器,这会消耗很多功率。这种方法通常可以在高性能ToF传感器中找到。

计算时间的另一种方法是发出调制光源并检测反射光的相位变化。相变可以通过混合技术容易地测量。调制激光源比发出短脉冲更容易,并且混合技术比时间数字转换器更易于实现。此外,LED可用作调制光源来代替激光。因此,基于调制的ToF系统适合于低成本ToF传感器。

相机阵列:

摄像头阵列方法使用放置在不同位置的多个摄像头来捕获同一目标的多个图像,并根据几何结构计算深度图。在计算机视觉中,这也称为“立体视图”或“立体”。最简单但最受欢迎的相机阵列是双相机,其中两个相机相隔一定距离以模仿人眼。对于空间中的每个点,在两个摄像机图像中的位置均出现可测量的差异。然后,通过基本几何来计算深度。

相机阵列的主要挑战是如何在多个图像中找到匹配点。匹配点搜索涉及复杂的CV算法。目前,深度学习可以帮助您找到准确度较高的匹配点,但是其计算成本很高。另外,有很多点很难找到匹配点。例如,在上面的瓦格纳雕像的两个视图中,鼻子是最容易匹配的点,因为它的特征易于提取和比较。但是,对于面部的其他部分(尤其是面部无纹理的表面),很难找到匹配点。当两个相机图像的遮挡不同时,匹配会更加复杂。目前,相机阵列作为深度传感器的鲁棒性仍然是一个具有挑战性的问题。