通过增加“温度补偿”这一关键机制,气体探测设备制造商确保了传感器的性能。气体灵敏度(以及零基线信号)常常随着温度有所变化,所以当温度升降时,气体灵敏度呈非线性变化。

在研发气体探测设备的过程中,人们用了大量时间将相同的气体传感器放置于不同温度和不同浓度气体中(温度在-30℃~+50℃之间)。所采集的数据经过处理后生成了一个为气体探测器所用的温度补偿算法,以确保传感器读数在整个操作量程内保持一致。

“常规”使用年限

检测一氧化碳或硫化氢等普通气体的电化学传感器的使用年限通常为2~3年。而一些特殊气体,如氟化氢气体的传感器的使用年限仅仅只有12~18个月。具体使用视环境会有相应的延长和缩短。

在理想情况下,即温度和湿度分别保持在20℃和60%RH左右,同时没有污染物的侵入时,已知有的电化学传感器工作超过11年!周期性地暴露在目标气体环境中并不会限制传感器的使用年限,优质的传感器通常都装备充足的催化剂和结实耐用的导体,这些材料并不会因为化学反应而轻易消耗殆尽。

传感器也有所谓的“库存期”或者“存贮周期”,这些时间可能会让用户,服务公司和制造商都感到困惑和沮丧。电化学传感器在生产后通常都有六个月的存贮周期(假定存贮条件为理想的20℃)。在超出这一周期后,传感器输出的信号就有可能变得不稳。这个周期中的一小部分时间不可避免地要用于生产和运输环节。所以,对传感器备件的采购进行详细计划就变得至关重要,其目标是尽量缩短备件在仓库中的存贮时间。

影响传感器寿命的因素

极端温度可以影响传感器寿命。通常,制造商所宣称的设备操作温度范围通常在-30℃到+50℃之间变化。然而,高质量的传感器能够在短时间内承受突破此范围的温度。比如,传感器(如H2S或CO)在短时间(1~2小时)暴露于60℃到65℃是没有问题的。但是,如果极端情况重复发生则会造成电解质挥发,也有可能造成零基线读数移动和反应迟缓等情况。

温度过低时,传感器的灵敏度会降低。也许传感器可以在-40℃的低温工作,但是对气体的灵敏度会大幅度下降(灵敏度甚至可能降低高达80%),而且反应时间也会延长许多,另外,当温度降到-35℃以下时,电解质还有结冰的危险。

当气体浓度过高时,也有可能造成传感器性能下降。通常,电化传感器在测试时,极限气体浓度是其设计浓度的十倍。使用高质量催化剂的传感器应该可以承受这样的情况,并不会对其化学特性或长期性能造成损坏。而使用低质量催化剂的传感器则有可能造成损坏。