4.重复步骤2和3,直到读取所有行中的所有像素。

下图直观地显示了此过程。

该图取自KAI-2020产品数据表。当V1正常脉冲且V2呈现较高幅度的脉冲时,就会发生光电二极管电荷转移。这之后是一个延迟(tL),然后V1和V2上的正常脉冲将第一行传输到水平移位寄存器中。接下来,发生水平读出,然后传输第二行,然后发生相同的水平读出,依此类推,直到到达图像数据的末尾(在这种情况下,为行1214)。下图指定了行时序,即,信号活动与上一张图中代表水平读数的灰色阴影区域相对应。

图取自KAI-2020数据表 尽管需要花费一些时间,但是您可以通过将读出定时的每个元素相加来准确地计算出读出持续时间。例如,如果水平移位时钟的频率为40 MHz,则采用上面所示的实现方法,一行的读取时间(tL)为tVCCD + tHD +(25 ns×1644)+ 12.5 ns。如果将其乘以行数并加上光电二极管电荷转移所需的时间,则就可以知道总读出时间的和是多少。

影响最大帧频的因素

请 输入

即使数据表指定了帧频,了解读出定时的细节仍然很重要,因为特定应用程序的最大帧频会受到许多操作特性的影响。其中包括使用合并,施加到水平移位寄存器的时钟频率以及选择单输出还是双输出。

此外,诸如KAI-2020之类的CCD具有"行转储"(line dump)功能,它的作用与名称所暗示的差不多--你可以一举丢弃整条行,从而避免所有通过水平移位寄存器传输单个像素所需的时钟周期。如果你做了大量的"行转储",那么最大帧频将大大增加。

原则上,像素不能随意丢弃,但如果为了特定的要求不得不这么做,那另当别论。

结论

请 输入

通过以上的介绍,相信你对如何通过检查传感器数据表中的时序图和其他信息来确定CCD的帧频已经有了一个清晰的认识。

关于MEMS,传感技术就介绍完了,您有什么想法可以联系小编。