提升正向设计能力。从航天航空、汽车、生物医疗等领域用户的需求出发,自上而下分解增材制造产品、工艺、材料、软件的解决方案,实现覆盖产品系统全生命周期的设计制造一体化,提升增材制造的正向设计能力。加快建模软件、扫描软件、控制软件的核心引擎研发,推动行业和领域专用设计及仿真软件应用。支持汇集技术规范、操作规范、国家标准、经验公式、模型算法等软件核心内容,以及解决工具的行业知识库、模型库和算法库建设。鼓励国内激光器、扫描振镜企业加强与美国、加拿大等国知名企业、科研机构合作,针对技术链条中的薄弱环节加强技术研发,解决实际问题。

建立有效对接渠道。加强原材料供给,形成与装备和工艺软件相适应的原材料体系,向高性能、产品种类多元化、工艺成熟化和低成本化发展。加强增材制造技术与传统制造业的融合,鼓励传统制造业企业应用增材制造技术,为传统工艺提供轻量化、多件融合、分布式生产、按需生产、个性化等服务,降低制造成本、优化开发、改善生产流程和质量。建设跨行业、跨领域的工业互联网平台,支持由大型企业跨界介入、各领域制造业企业共同参与,进而把增材制造应用到各行各业。推广在线设计平台和在线工厂等新业态、新模式,打造增材制造领域APP和用户双向迭代的双边市场,支持增材制造厂商建设全球伙伴关系。

推广技术示范应用。在西安、杭州等增材制造产业较为发达的城市开展示范应用。以直接制造为主要战略取向,兼顾原型设计和模具开发应用,拓宽增材制造在工业产品研发设计中的应用范围,推动其在传统制造业、高端装备制造、医疗、文化创意、创新教育等领域的规模化应用。利用增材制造云平台等新模式,打通线上线下在社会、企业、家庭中的应用路径。实施增材制造设计与工艺、服务的完整解决方案,面向结构拓扑优化、设计与模型处理、设计评估与参数优化、工艺模拟与工业优化、增材制造设备与质量检测等全流程,寻求实现性能、经济性和工艺可实现性之间的平衡。

完善产业发展支撑体系。促进增材制造扶持资金精准化。加强对技术研发的补贴,采取事前资助、事后补助并举的方式,支持工艺、材料的基础研究、应用研究等,完善资金管理和监督制度。推动增材制造人才专业化。将增材制造技术纳入学科建设体系,开展以学科专业集群为基本单元知识和能力体系的教育,基于真实项目实训、面向交叉学科集群开展人才培育,推动增材制造人才培养模式变革。加强完善增材制造标准体系。在材料工艺研发与验证流程、零件修理工艺研发流程、零件修理工艺验证流程等领域开展标准制定,规范增材制造流程。加强与ASTM、ISO、美国SAE、德国DIN、VDI等标准化协会和组织的合作,力争融入国际增材制造标准体系。