图5和图6分别从频域和时域展示了三种布线方式所产生的共模噪声。不论是45°转角还是90°转角,产生的共模噪声都比0°高得多,而45°转角布线要略优于90°转角。
图5 不同布线方式下共模噪声频域比较
图6 不同布线方式下共模噪声时域比较
根据经验法则,为了把错位维持在信号上升边10%以内,要求两线长度匹配至上升边空间延伸的10%以内。这种情况下,对走线总长度的匹配要求如下:
ΔL =0.1×RT×v
式中:ΔL 表示为错位维持在上升边的10%以内,两条走线之间的最大长度偏差;RT表示信号的上升边;v 表示差分信号的传播速度。如果信号的传播速度大致为6 in/ns,上升边为100 ps,那么两条走线的长度应匹配至其偏差小于60 mil。由于高速信号上升时间越来越短,留给缘于走线长度偏差的错位预算在不断变小,使得走线长度之间的匹配显得愈加重要。
因此在实际应用中,应尽量采用0°这样水平对称的方式布线,来达到等长等距的目的。
2.2 信号分布方式
BGA封装管脚在扇出时通过过孔连接至PCB板其他各层,几十对差分对同时高密度、长线并行,相邻的传输线由于电场和磁场的作用(耦合电容/耦合电感),一对差分线传输的信号会对相邻的传输线产生串扰[9]。由于BGA焊点的排列是固定的,因此焊盘和过孔的位置取决于焊点的分布,合理的BGA管脚信号布局可以改善差分对之间的串扰。不同信号分布方式见图7。
图7 不同信号分布方式
如图7所示的两种布局方式:3对信号横向水平布置;3对信号正交布置。每对信号周围各有两个隔离地孔。中间为受扰线,两边为干扰线,根据走线将3对差分对定义成6个差分端口,D1~D3为BGA扇出端,通过观察D4,D6端口对D2端口的远端串扰来分析相邻通道的串扰情况,由于两边对称,只需观察D4端口对D2端口的串扰。差分对远端串扰比较如图8所示。