多层PCB板的层叠结构以及叠加原则解析

如果电源和地线之间的电位差不大的话,可以采用较小的绝缘层厚度,例如5mil(0.127mm)。

(3)电路中的高速信号传输层应该是信号中间层,并且夹在两个内电层之间。这样两个内电层的铜膜可以为高速信号传输提供电磁屏蔽,同时也能有效地将高速信号的辐射限制在两个内电层之间,不对外造成干扰。

(4)避免两个信号层直接相邻。相邻的信号层之间容易引入串扰,从而导致电路功能失效。在两信号层之间加入地平面可以有效地避免串扰。

(5)多个接地的内电层可以有效地降低接地阻抗。例如,A信号层和B信号层采用各自单独的地平面,可以有效地降低共模干扰。

(6)兼顾层结构的对称性。

11.1.2 常用的层叠结构

下面通过4层板的例子来说明如何优选各种层叠结构的排列组合方式。

对于常用的4层板来说,有以下几种层叠方式(从顶层到底层)。

(1)Siganl_1(Top),GND(Inner_1),POWER(Inner_2),Siganl_2(Bottom)。

(2)Siganl_1(Top),POWER(Inner_1),GND(Inner_2),Siganl_2(Bottom)。

(3)POWER(Top),Siganl_1(Inner_1),GND(Inner_2),Siganl_2(Bottom)。

显然,方案3电源层和地层缺乏有效的耦合,不应该被采用。

那么方案1和方案2应该如何进行选择呢?一般情况下,设计人员都会选择方案1作为4层板的结构。选择的原因并非方案2不可被采用,而是一般的PCB板都只在顶层放置元器件,所以采用方案1较为妥当。但是当在顶层和底层都需要放置元器件,而且内部电源层和地层之间的介质厚度较大,耦合不佳时,就需要考虑哪一层布置的信号线较少。对于方案1而言,底层的信号线较少,可以采用大面积的铜膜来与POWER层耦合;反之,如果元器件主要布置在底层,则应该选用方案2来制板。

如果采用如图11-1所示的层叠结构,那么电源层和地线层本身就已经耦合,考虑对称性的要求,一般采用方案1。

在完成4层板的层叠结构分析后,下面通过一个6层板组合方式的例子来说明6层板层叠结构的排列组合方式和优选方法。

(1)Siganl_1(Top),GND(Inner_1),Siganl_2(Inner_2),Siganl_3(Inner_3),POWER(Inner_4),Siganl_4(Bottom)。

方案1采用了4层信号层和2层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作,但是该方案的缺陷也较为明显,表现为以下两方面。

① 电源层和地线层分隔较远,没有充分耦合。