5、使用国际知名基材–不使用“当地”或未知品牌
好处
提高可靠性和已知性能
不这样做的风险
机械性能差意味着电路板在组装条件下无法发挥预期性能,例如:膨胀性能较高会导致分层、断路及翘曲问题。电特性削弱可导致阻抗性能差。
6、覆铜板公差符合IPC4101ClassB/L要求
好处
严格控制介电层厚度能降低电气性能预期值偏差。
不这样做的风险
电气性能可能达不到规定要求,同一批组件在输出/性能上会有较大差异。
7、界定阻焊物料,确保符合IPC-SM-840ClassT要求
好处
NCAB集团认可“优良”油墨,实现油墨安全性,确保阻焊层油墨符合UL标准。
不这样做的风险
劣质油墨可导致附着力、熔剂抗耐及硬度问题。所有这些问题都会导致阻焊层与电路板脱离,并最终导致铜电路腐蚀。绝缘特性不佳可因意外的电性连通性/电弧造成短路。
8、界定外形、孔及其它机械特征的公差
好处
严格控制公差就能提高产品的尺寸质量–改进配合、外形及功能
不这样做的风险
组装过程中的问题,比如对齐/配合(只有在组装完成时才会发现压配合针的问题)。此外,由于尺寸偏差增大,装入底座也会有问题。
9、NCAB指定了阻焊层厚度,尽管IPC没有相关规定
好处
改进电绝缘特性,降低剥落或丧失附着力的风险,加强了抗击机械冲击力的能力–无论机械冲击力在何处发生!
不这样做的风险
阻焊层薄可导致附着力、熔剂抗耐及硬度问题。所有这些问题都会导致阻焊层与电路板脱离,并最终导致铜电路腐蚀。因阻焊层薄而造成绝缘特性不佳,可因意外的导通/电弧造成短路。
10、界定了外观要求和修理要求,尽管IPC没有界定
好处
在制造过程中精心呵护和认真仔细铸就安全。
不这样做的风险
多种擦伤、小损伤、修补和修理–电路板能用但不好看。除了表面能看到的问题之外,还有哪些看不到的风险,以及对组装的影响,和在实际使用中的风险呢?
11、对塞孔深度的要求
好处
高质量塞孔将减少组装过程中失败的风险。
不这样做的风险
塞孔不满的孔中可残留沉金流程中的化学残渣,从而造成可焊性等问题。而且孔中还可能会藏有锡珠,在组装或实际使用中,锡珠可能会飞溅出来,造成短路。
12、PetersSD2955指定可剥蓝胶品牌和型号
好处
可剥蓝胶的指定可避免“本地”或廉价品牌的使用。
不这样做的风险
劣质或廉价可剥胶在组装过程中可能会起泡、熔化、破裂或像混凝土那样凝固,从而使可剥胶剥不下来/不起作用。