对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。也许只要是接触过Layout的人都会了解差分走线的一般 要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。“尽量靠近 原则”有时候也是差分走线的要求之一。但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。下面重点讨论一下PCB差分 信号设计中几个常见的误区。

误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传 输的机理认识还不够深入。从图1-8-15的接收端的结构可以看到,晶体管Q3,Q4的发射极电流是等值,反向的,他们在接地处的电流正好相互抵消 (I1=0),因而差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作 为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了 有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路,图1-8-16是单端信号和差分信号的地磁场分布示意图。

高速PCB设计中优化走线的策略阐述

在 PCB电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当 地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路,见图1-8-17所示。尽管参考平面的不连续对差分走线的影响没 有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加EMI,要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传 输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成EMI辐射,这种做法弊大于利。

高速PCB设计中优化走线的策略阐述

误区二:认为保持等间距比匹配线长更重要。在实际的PCB布线中,往往不能同时满足差分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在, 必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行,这时候我们该如何取舍呢?在下结论之前我们先看看下面一个仿真 结果。