今天小编要和大家分享的是EDA,IC设计相关信息,接下来我将从PCB射频电路电源和接地的设计方法解析,第二章 地线干扰与接地技术ppt这几个方面来介绍。

EDA,IC设计相关技术文章PCB射频电路电源和接地的设计方法解析第二章 地线干扰与接地技术ppt

EDA,IC设计相关技术文章PCB射频电路电源和接地的设计方法解析

射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地的基本原则的基础上进行。本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的性能指标。考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器元件的位置非常敏感,本文着重讨论了有关PLL杂散信号抑制的方法。为便于说明问题,本文以MAX2827 802.11a/g收发器的PCB布局作为参考设计。

PCB射频电路电源和接地的设计方法解析

图1:星型拓扑的Vcc布线

设计RF电路时,电源电路的设计和电路板布局常常被留到了高频信号通路的设计完成之后。对于没有经过认真考虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,这会进一步影响到RF电路的性能。合理分配PCB的板层、采用星型拓扑的Vcc引线,并在Vcc引脚加上适当的去耦电容,将有助于改善系统的性能,获得最佳指标。

电源布线和旁路的基本原则

明智的PCB板层分配便于简化后续的布线处理,对于一个四层PCB板(WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。第二层采用连续的地平面布局对于建立阻抗受控的RF信号通路非常必要,它还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。

PCB射频电路电源和接地的设计方法解析

图2:不同频率下的电容阻抗变化

大面积的电源层能够使Vcc布线变得轻松,但是,这种结构常常是引发系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。反之,如果使用星型拓扑则会减轻不同电源引脚之间的耦合。图1给出了星型连接的Vcc布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。图中建立了一个主Vcc节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。每个电源引脚使用独立的引线在引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。