在图1所示的两个放大器配置中,运放的负输入端是负反馈点,因此只要在感兴趣频率点的开环增益幅度足够大,这就是一个非常低的增量阻抗节点,也称为虚地。所以将信号源电压转换为等效输入信号电流、然后乘上反馈电阻值(RF)得到纯输出电压(YINV)是有意义的,如图4所示。
图4:图3A的戴文宁等效电路。
完成这种转换的一种流行方法是通过戴文宁等效网络。图4显示了图3A的戴文宁等效电路。在图3A中,假设运放及其反馈网络不存在,换句话说去除了负载,然后考虑在以前连接的运放负输入端处来自输入源(XINV)的贡献。这种贡献可以被称作戴文宁等效电压(VTH),它的幅度随频率增加而减小,因为当频率增加时补偿电容的阻抗会减小。
与此同时,由于补偿电容的作用,戴文宁等效串联阻抗(ZTH)受相同方式的影响。因此流向运放负输入端(虚地)的净信号电流(ISIG)将等于(VTH/ZTH=XINV/RG),其中分子项VTH中的所有拐点将被分母项ZTH中的所有拐点所抵消,继而导致不受补偿网络影响的信号电流。最终由于超前-滞后网络的使用而没有带宽限制。见公式2a和公式2b。
公式2.a
公式2.b
这种超前-滞后实现的缺点是,随着频率的变化会出现噪声增益峰值,但只要有足够的补偿,信号路径增益就不会出现峰值,因而降低了信噪比(SNR)。
超前补偿:不同实现方法
至此讨论的超前-滞后补偿(图3A)的实现方法是,在运放负输入端到地之间、或等效在运放两个输入端之间连接串联电阻和电容元件。然而,当这样的串联结构连接在放大晶体管的输入-输出引脚之间时,补偿技术被称为超前补偿与最终极点分离补偿的组合。这种串联电阻与电容补偿结构几乎总是存在于运放内部。
通常这个过程一开始是在增益单元间放置一个电容,这样由于电容米勒效应会形成极点分离补偿。然后为了补偿由此形成的右半平面零点,需要增加一个串联电阻,并通过调整阻值实现超前补偿,此时需要移动零点直到它抵消第一个非主要极点。最终人们如何连接这样的串联电阻和电容网络取决于超前或超前-滞后补偿顶点的具体要求和可用选项。
为了在使用运放IC的放大器中实现超前补偿,需要并联反馈电阻放置一个反馈电容。尽管是超前补偿实现方法,但它的意图通常是通过补偿网络引入一个零点来抵消一个极点,而且一般是待补偿系统的第一个非主要极点。