形状因子用来表征并联电容C1的非线性程度,表达式为
当α=0时,C1为线性;α=1时,放大器并联电容完全由非线性晶体管输出寄生电容Cout(v)构成。
为了计算这个等效电容,需要知道器件的输出电容与电压的关系。因此,每一个影响VD(t)的放大器参数都会同样影响Cout(v)。因此,电源电压和形状因子在对CEQ的影响上起着重要作用,表达式为
图3所示为不同电源电压情况下等效电容的变化情况;图4为晶体管漏端电压波形受形状因子α的影响变化情况。
要计算出准确的等效电容值,首先必须有一个完全线性的E类功率放大器电路,采用传统功率放大器电路分析方法从中获得线性并联电容C1。用C1代替不是完全非线性的非线性电容,并通过不断改变Cj0的值直到满足最大工作效率状态,即ZVS(zero-voltage switching)和ZVDS(zero-voltage-derivative switching)。此时得到的非线性电容值即为前文提到的线性等效电容。
3 合并联电容的E类功率放大器设计方法
由于并联电容对放大器电路的影响,含并联电容的E类功率放大器设计方法与传统方法有所不同。在设计中需要充分考虑并联电容的影响,在不同pn结渐变系数、不同信号占空比等条件下,通过计算满足最优化工作状态ZVS和ZVDS时放大器的电路元件参数值,如附加电容、谐振电容和电感、补偿电抗、负载等,从而获得放大器的设计参数。文献给出了针对任意形状因子、信号占空比、负载品质因数的E类功率放大器的详细设计流程图,并给出了负载品质因数为5时的设计数值结果表,为广大设计者提供了设计参考。
4 结语
并联电容在E类功率放大器中的作用十分重要,受到了人们的广泛关注。本文对E类功率放大器中的并联电容进行了详细的介绍,并给出了计算方法;对并联电容在E类功率放大器中的作用进行了分析,同时还给出了含并联电容的E类放大器设计方法,以方便E类功率放大器的设计。
责任编辑:gt
关于模拟技术就介绍完了,您有什么想法可以联系小编。