图1 AD7794内部简化结构模块图

图1给出了AD7794的简化结构,它属于∑-△调制的模数转换器,适用于窄带与高分辨率的场合。AD7794的∑-△调制器将随采样的输入信号转换为数字脉冲串,其“1”的密度包括数字量信息。通过数字滤波和抽取后,输出高分辨率低速率数据。∑-△调制器还具有降噪的作用,因为高的采样率将噪声基底压低,而滤波后大多数(高端频谱部分)噪声被滤除。调制器的阶数越高,在有用带宽内对噪声抑制的作用就越明显。但是,较高阶调制器容易不稳定。因此,必须在调节器阶数与稳定性之间进行权衡。在窄带∑-△模数转换器中,通常使用二阶或三阶调节器,这样器件就会具有良好的稳定性。

AD7794的低噪声仪表放大器可以工作在斩波模式,斩波器是AD7794的一个内嵌部件,可以用于消除飘移造成的误差。斩波器的工作原理就是在模数转换器的输入部件多路复用器的输出处交替地倒相(或削波)。然后,对每次斩波的正和负信号区段进行-_次模数转换。接着,用数字滤波器对这两次转换结果取平均。这样,就消除了模数转换器内出现的任何失调误差,更重要的是,将温度对失调漂移的影响降到最低。

3 AD7794的应用电路设计

图2 AD7794一个通道典型应用

图2给出了AD7794的应用框图。AD7794具有简化的同步串行接口,易于和微控制器MC相连。AD7794中串行接口、ADC、斩波式仪表放大器和多通道的结构形成了一种全ADC类型——仪(表专)用ADC。

其中,MSP430F1611是一款超低功耗混合信号处理器,共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在待机方式下,其耗电为0.7uA;在节电方式下,最低可达0.1uA。AD7794与MSP430F1611的连接十分灵活。下面霞点描述典型的传感器及调理电路的设计,如图3所示。其中AD7794有三套(参考电压和被测电压)六路差分输入端,该电路可任选一套接入。

图3 AD7794输入电路设计

整个电路主要由传感器电桥与信号调理电路组成,传感器以差分方式输m信号,即通过输出正和输出负两端的电压差值来表示。当被测非电鼍发生变化时,会引起传感器的电阻值发生变化,而此变化会线性的反应在R7和R9左端的电位差(电压)上,通过采集这个电位的差值信号就可以计算被测量及其变化。模拟的传感器信号通过AD7794一AIN+和AD7794_AIN一差分端口送到AD7794进行数模转换。在实际使用的过程中,有可能输入的模拟信号电J丘受到干扰而有较大范围的波动,如果直接将传感器上的信号接入到AD,则在极端情况下,如瞬态静电高压,就有可能造成对AD7794永久性的损坏。因此,电路中采用二极管D1、D2、D3和D4使输入信号被钳制在一个安全的范围之内,从而起到过压(包括正和负)保护的作用。电阻R7、R8、R9和R10作为限流电阻使用(其阻值对于信号而言几乎没有影响),进一步保护了后级电路。cl和C2能有效地滤除进入电路的射频干扰,对靠近电台的地区使用特别有效。