今天小编要和大家分享的是模拟技术相关信息,接下来我将从基于高分辨率模数转换器架构实现运算放大器与ADC的接口设计,4通道 ads1115 小型 16位 高精密 模数转换器 adc 开发板模块这几个方面来介绍。

模拟技术相关技术文章基于高分辨率模数转换器架构实现运算放大器与ADC的接口设计4通道 ads1115 小型 16位 高精密 模数转换器 adc 开发板模块

模拟技术相关技术文章基于高分辨率模数转换器架构实现运算放大器与ADC的接口设计

用来驱动高分辨率模数转换器(ADC)的信号源具有数百欧姆或更大的高频交流负载和直流负载。因此,具有数兆欧姆高输入阻抗以及低输出阻抗的高性能运算放大器是输入ADC驱动器的理想选择。ADC驱动器被用作缓冲器和低通滤波器以降低整体系统噪声。利用这三种不同驱动架构中的其中一种,来设计高性能运算放大器与ADC的接口,你就能够提升系统性能。用来驱动高分辨率模数转换器(ADC)的信号源具有数百欧姆或更大的高频交流负载和直流负载。因此,具有数兆欧姆高输入阻抗以及低输出阻抗的高性能运算放大器是输入ADC驱动器的理想选择。ADC驱动器被用作缓冲器和低通滤波器以降低整体系统噪声。

当信号沿着PCB走线和很长的电缆传输时,系统中的信号噪声在累积,差分ADC抑制所有以共模电压出现的信号噪声。采用差分信号而不是单端信号有两个优点:差分信号可使ADC动态范围扩大两倍,以及提供更好的谐波失真性能。

通过双运算放大器结构产生差分信号的方法有好几种,两种常见方法是单端-差分转换和差分-差分转换。前者要求单输入源,后者要求差分输入源。为利用ADC的整个动态范围,必须将输入驱动至满量程输入电压。

信号路径的基本考虑要素

有效设计信号路径模拟前端必须连接一些关键的元件(图)。典型的信号路径模拟前端包括驱动ADC的运算放大器、RC滤波器以及微控制器或者数字信号处理器(DSP)。

基于高分辨率模数转换器架构实现运算放大器与ADC的接口设计

典型的信号通道模拟前端包括驱动ADC、RC滤波器以及MCU或DSP的运算放大器。

实际的输入源阻抗可能并非理想,因此必须用输出阻抗非常低的缓冲放大器来驱动ADC输入。外部RL-CL滤波器用作抗混叠滤波器,它有助于降低ADC驱动器的噪声带宽,并对ADC采样保持电路产生的充电瞬变进行缓冲。为尽量降低输入电压的下降,外部并联电容值(CL)应该比ADC内部输入电容大10倍左右。此外,外部串联电阻(RL)应该足够大,以便在运算放大器输出端保持相位延迟,从而保持稳定性。