◇具有0.01%低THD+N和较高的PSRR (217Hz时72 dB)
◇有集成的杂音抑制功能;
◇静态电流低(4mA);
◇低功耗关断模式(0.1μA);
◇具有短路和过热保护功能;
◇采用热效应好、节省空间的封装形式。
2、 MAX9700的调制模式
MAX9700有两种调制模式:一是固定频率调制(FFM)模式;二是扩谱调制(SSM)模式。FFM模式下,锯齿波的周期保持不变,这一点和传统的PWM方案相同;扩谱调制模式下,锯齿波的周期会逐周发生改变(变化范围达±10%)。
扩谱调制模式下,其周期的逐周期变化可降低基波频率下(fo±10%)的频谱能量,同时可扩展特定带宽(nfo+10%,n为正整数)内的谐波分量。这样,大量的频谱能量就不是集中在开关频率的各倍频处,而是在一个随频率而增加的带宽内展宽。当频率超过数兆赫兹后,宽带频谱看起来就像是白噪声,因而可达到降低EMI之目的。在FFM模式下,能量包含在较窄的频带内,并具有较高的峰值。而在扩谱调制模式下,其能量包含在较宽的频带内,这样可以降低峰值能量。 2.1免滤波器调制方式
传统D类放大器的一个主要缺点就是它需要外部LC滤波器。这不仅增加了方案总成本和电路板空间,也可能因滤波元件的非线性而引入额外失真。而MAX9700采用了先进的“免滤波器”调制方案,从而可省掉(至少可以最大限度地降低)外部滤波器的要求。
图2给出了MAX9700免滤波器调制拓扑的功能图。该方式与传统的PWM型BTL放大器不同,它的每个半桥都有自己专用的比较器,从而可独立控制每个输出。调制器由差分音频信号和高频锯齿波驱动。当两个比较器输出均为低电平时,MAX9700的每个输出均为高。与此同时,或非门的输出也变为高电平,但这样会因为RON和CON组成的RC电路而产生一定的延时。一旦或非门延时输出超过特定门限,开关SW1和SW2即会闭合。这将使OUT+和OUT-变为低,并保持到下个采样周期的开始。这种设计使得两个输出同时开通的时间(tON(MIN))最短,具体时间可由RON和CON的值决定。当输入为零时,两个输出同相并具有tON(MIN)的脉冲宽度。随着音频输入信号的增加或减小,其中一个比较器会在另一个之前先翻转。这种工作特性外加最短时间导通电路的作用,将促使一个输出改变其脉冲宽度,另一个输出的脉冲宽度保持为tON(MIN)。这种方式意味着每个输出的平均值都包含输出音频信号的半波整流结果。此后,对两路输出的平均值进行差值运算,便可得到完整的输出音频波形。图3所示是这种调制模式下的信号波形图。