则有
图2 双减法电流采样电路
同理可得第二路运放U8A的输出为:
其主要思路为:LEM传感器输出的Ui=v,此电压先后施加到由TLC2274构成的两个减法电路上,第一路以Ui减去传感器采样结果的中值参考电压Uref (2.5v), 然后再线性放大到DSP的A/D采样所要求的电压范围(0~Ud)。对于TMS320C/F20x和C/F24x 系列的DSP,Ud的值为5v;对于TMS320LC/F240x Ud为3.3v。第二路则相反,用中值参考电压Uref 减去传感器输出电压Ui,同样也线性放大到合适的电压范围。Z1,Z2为两个3.3v的稳压二极管,对运放输出电压起到限幅作用。当Ui值大于Uref 时,Uo1输出为正电压,且电压范围是0~Ud,而由于二极管D2的存在使得电流不能注入到运放中,故而第二路运放不能输出负电压,而是钳位在0v;当Ui值小于Uref 时,Uo2输出为正电压,同样而由于二极管D1的存在使得第一路运放不能输出负电压,也是钳位在0v。在一个正弦周期内的某一时刻只会有一路信号输出0~Ud的电压,这比图1中的方法采样窗口要宽一倍,从而提高了采样精度。
两路输出分别送给DSP中两个A/D采样通道,但只有一路输出值是有用的,我们可以编程区分出有用的信号。软件流程如图3:
图3 软件流程图
这样两相电流实际需要4路A/D通道,比图1中的方法要多用两个A/D采样通道,而目前DSP提供的A/D采样通道足够多的,以TMS320LF2407(A) 为例,其有16路A/D通道。B相电流采样电路与A相相同,这样我们就可以用一片TLC2274来实现两相电流的采样了。DSP实现的子程序已附于文后。
电路的改进
通过实验不难发现,TLC2274可以在单电源供电的情况下工作,那么图2所示的双减法电路可以做一些改进。由于TLC2274是Rail-to-Rail输出的,所以我们可以直接用系统的3.3v为其提供工作电压Vcc,而Vdd处可以直接接地。将D1,D2,Z1,Z2去掉后再做实验验证,其工作还是正常的。但这样做以后采样精度有所降低,所以建议还是用正负双电源供电。
附AD 采样子程序
.bss Uo1, 1