(2)摆率

现在,假设信号变得非常大。例如,它变为1V而不是1-2mV这么小。那么,运算放大器会发生混乱。我们知道,运放旨在处理小信号并在其带宽内运行,现在又处于大信号区域。这种情况下,运算放大器将饱和,其中之一将具有全部电流,另一个则为零。这也叫尾电流,然后用于将2V信号“传输”到下一级。这时候,若立即更改电压都是不可能的,因为它将需要无限的电流来为系统“固有”的电容充电。如果使用电容来进行补偿,它们可以高达10pF左右。而且我们也没有无限的电流,这将导致压摆率。那么,这种大信号变化的原因是什么?这是因为当系统中的电源打开时或来自上一级的输入进行电源循环或切换时。在这些情况下,我们需要进行大信号分析。

让我们更多地讨论压摆率的公式。当运算放大器处于大信号模式时,运算放大器的所有偏置都会完全饱和,这就是为什么我们需要返回库仑定律,该定律规定q = CV 或 I = CdV/dt,因此dV/dt = I/C,这是教科书中压摆率的公式。

以润石高速运算放大器为例,压摆率是160mV/us,即运算放大器需要1us才能将其输出增加160mV。

二、选择带宽还是选择转换速率?

如果继续运行,2V信号将处于“压摆限制”状态,直到差分对的一侧被耗尽为止,然后一旦电流开始在被耗尽的差分侧建立,它将进入“带宽”区域,所以,建立时间=回转时间+BW响应时间。

转换速率是运算放大器可以响应输入信号的较大变化的最大速率,带宽是它可以响应信号的微小变化的最大速率。两者共同确定步进响应的总建立时间。一些应用程序对带宽的要求更为严格,并且其压摆率要求不是太严格,可能在唯一的摆压率方便的真实位置是启动期间就是这种情况。但是,某些应用(例如电机驱动器)需要运算放大器完全打开或关闭,而此时的摆率要求更为严格。归结为将电气信息从一个阶段传输到另一个阶段。我们受到这样做所需要的电流量的限制,这会产生压摆率。在大信号区域中,为压摆率;在小信号区域中,为带宽。所以,对于高速运算放大器,我们可能需要选择高带宽和高压摆率。

关于模拟技术就介绍完了,您有什么想法可以联系小编。