最后一个不匹配可能最难理解和处理:带宽不匹配。如图7所示,带宽不匹配具有增益和相位/频率分量。这使得解决带宽不匹配问题变得更为困难,因为它含有另外两个不匹配参数的分量。然而,在带宽不匹配中,我们可在不同的频率下看到不同增益值。此外,带宽具有时序分量,使不同频率下的信号通过每个转换器时具有不同的延迟。出色的电路设计和布局布线实践是减少ADC间带宽失配的最好方法。ADC之间的匹配越好,则产生的杂散就越少。正如增益和时序不匹配会导致在输出频谱的fS/2 ± fIN处产生杂散一样,带宽不匹配也会在相同频率处产生杂散。

交织型采样ADC的基本原理

现在我们已经讨论了交织ADC时引起问题的四种不同的不匹配,可以发现有一个共性。四个不匹配中有三个会在输出频谱的fS/2 ± fIN处产生杂散。失调不匹配杂散很容易识别,因为只有它位于fS/2处,并可轻松地进行补偿。增益、时序和带宽不匹配都会在输出频谱的fS/2 ± fIN处产生杂散;因此,随之而来的问题是:如何确定它们各自的影响。图8以简单的图形方式指导如何从交织型ADC的不同不匹配中识别杂散来源。

交织型采样ADC的基本原理

图8.交织型不匹配的相互关系

如果只是考察增益不匹配,那么它就是一个低频(或直流)类型的不匹配。通过在直流附近执行低频增益测量,然后在较高的频率处执行增益测量,可将带宽不匹配的增益分量与增益不匹配分离。增益不匹配与频率无函数关系,而带宽不匹配的增益分量与频率呈函数关系。对于时序不匹配,可以采用类似的方法。在直流附近执行低频测量,然后在较高的频率下执行后续测量,以便将带宽不匹配的时序分量与时序不匹配分离。

结论

最新通信系统设计、尖端雷达技术和超高带宽测量设备似乎始终领先于现有的ADC技术。在这些需求的推动下,ADC的用户和制造商都想方设法,试图跟上这些需求的步伐。与提高典型ADC转换速率的传统方式相比,交织型ADC可以更快的速度实现更宽的带宽。将两个或更多ADC交织起来,可以增加可用带宽,并以更快的速度满足系统设计要求。然而,交织型ADC并非没有代价,ADC之间的不匹配不容忽视。虽然不匹配确实存在,但了解其本质及如何正确处理它们,设计人员就能更加明智地利用这些交织型ADC,并满足最新系统设计不断增长的要求。