可以纠缠在一起的量子态(或者是量子位元)数目自然不止一个,使量子位元彼此可以纠缠目前是量子计算机硬件技术最大的挑战。像在可扩充性(scalability)此一性质最被看好的量子点(quantum dot)量子位元技术,因为它用的是半导体制造技术,而半导体擅于微缩、整合,因此生产巨量的量子位元似乎不是问题。但是目前的技术只能让两个量子点彼此纠缠,与用超导体技术作的量子位元可以彼此纠缠的量子位元数相差甚远,因此便成为目前此量子点技术应用亟需克服的最大挑战。

量子计算便是以纠缠和叠加来计算开始的始初态,之后便以量子闸(quantum gate)来执行量子算法所需的运作。量子算法可以快速进行的原因是因为纠缠与叠加量子位元后所造成的量子状态运作时是平行运算,这是量子霸权的技术与科学基础。

平行运算的概念传统计算机也有,4核、8核的CPU乃至于几千个图形处理器同时运行是现在计算机的基本运算模式。但是这相对于量子计算不只是小巫见大巫,而是许多个数量级的差距。以IBM与Google最近发表的53量子位元的量子计算机为例,它们的计算一开始准备的初始状态理论上可以是2的53次方(大约是10的16次方)的纠缠、叠加状态,而这么庞大数量的讯息自始便以平行计算,来执行算法。以后每增加一个量子位元,潜在的平行计算位元便倍增,这是以指数成长的平行运算机器!

量子计算还有一个潜在的优点较少人提及。传统计算机由于遵循冯诺曼架构,资料在存储器与处理器之间的搬动造成运算速度与功耗的问题。所以现在高效能计算无不戮力以赴的至少形成近存储器运算(near memory computing),譬如以异构整合将处理器与存储器置于一封装内,缩短数据搬动距离。量子位元由于无法被复制,从设计的第一天开始,量子计算就直接在量子位元上运算。如果这不是存储器内计算(in-memory computing),至少也是near memory computing,但此是另话了。

关于显示光电就介绍完了,您有什么想法可以联系小编。