CFR
目前许多无线通信系统,如WCDMA、WiMAX,其中频信号通常由多个独立的基带信号相加而成。合成的中频信号有较大的峰均比(Peak-to-Average Ratio),并符合高斯分布。而通常功放(PA)的线性区是有限的,较大PAR的中频信号对应的PA的工作范围将被缩小,从而引起PA效率的降低。因此在PA之前减小中频信号的PAR是非常重要的。波峰因子衰减(CFR)正是用来完成这一功能的,它将有利于保证PA输出的线性度,降低带外辐射,提高PA效率。
目前,中频采用的CFR算法有:波峰箝位(Clip),波峰修整(Peak Windowing)和波峰消减(Peak Cancellation)。其中波峰修整方式的性能和可实现性都较为适中。波峰消减相对于波峰修整有较好的带外特性,但需消耗更多的FPGA资源。
DPD
在无线通信系统中,往往需要PA的输出具有很高的线性度以满足空中接口标准的苛刻要求,而线性功放又非常昂贵。为了尽可能提升PA的输出效率和降低成本,必须校正PA的非线性特性,而对PA的输入信号进行预失真处理是一个不错的选择。
DPD实现方式分为查找表(LUT)和多项式(Polynomial)两类。两种算法的优缺点如表1所示。
FPGA实现优势
FPGA实现数字中频
随着WiMAX/LTE等宽带无线通信技术的逐渐成熟,对无线设备数字中频带宽的要求也越来越高。同时如MIMO等多天线技术日渐广泛应用,数字中频的通道数也在迅速增加。
对于如此大的运算带宽需求,许多DSP处理器难以满足实际应用,而专用芯片(ASSP)又缺乏相应的灵活性。采用FPGA实现数字中频,能够很好的协调处理能力和灵活性之间的矛盾。同时Altera公司针对3G/4G等应用开发了大量的数字中频参考设计和IP,简化了设计者的开发难度,缩短了设计周期。
FPGA器件属于硬件,它的特点是比较适合速度较高、逻辑关系不复杂的数据通路实现。
通过我们对前面DDC和DUC功能的分析,我们发现实现DDC/DUC的模块和运算主要有CIC/FIR滤波、NCO、插值/抽取、混频。这些基本上属于算法简单、但计算速度较高的处理,非常适合于FPGA的实现。
从另一个角度讲,FPGA相比DSP处理器的优势是并行构架。一个DDC/DUC模块完成以后,只要做简单的复制,就可以扩展到多路DDC/DUC。同时,一个ADC/DAC器件可以连接多个通道的DDC/DUC,从而可以轻松支持多载波(Multi-carrier)系统。