今天小编要和大家分享的是EMC,EMI设计相关信息,接下来我将从如何提高电子式互感器的电磁兼容EMC能力,新版电磁铁的应用(第1课时)ppt这几个方面来介绍。
EMC,EMI设计相关技术文章如何提高电子式互感器的电磁兼容EMC能力
1传感器的高压端电子电路供能问题的研究
对电子式互感器的输出信号在高压侧实现就地数字化,目的为了使被测量在信息传输过程中,不会产生新的误差,不受负荷影响。因此,对高压端信号处理部分的电子电路的供能是保证传感器可靠、稳定工作的关键因素,也是各种混合式电子互感器都普遍存在的技术难题。而且高压侧电源必须是悬浮式的,才能保证实现高低压侧电信号的完全隔离。根据目前国内外许多单位都在对混合式光电互感器高电位侧的电源供电问题进行研究情况,可行的技术方案由以下几种:(l)线圈从母线采电的供能方式。该供电方式是利用电磁感应原理,通过普通铁磁式互感器从高压母线上感应得到交流电电能,再经过整流、滤波、稳压后为高压侧电路供电。(2)高压电容分压器的供电方式。在高压母线与地之间连接高压电容分压器,从高压母线上直接取得能量,经过整流、滤波、稳压后,向高压侧电路供电。(3)蓄电池供能方式。这是一种采用蓄电池对高电位侧的电子线路进行供电的方式。
2电子式电压互感器的电磁兼容设计
电子式互感器一般安装于户外线路上,其工作环境恶劣,电子线路会受到来自外部环境的和电子式互感器自身的各种电磁干扰的影响,这些冲击电压或静电放电的干扰都会危害电子式互感器的设备安全,因此提高电子式互感器电磁兼容(EMC)能力,是保证其在电力系统现场能安全可靠的运行的重要步骤。对电子式互感器的抗干扰能力的设计,目前只能从已有的经验出发,尽量减少电磁干扰所造成的不利影响,降低对电力系统的安全运行的危害。
由于传感元件的电子线路处于高压端,电磁环境复杂,外界的电磁干扰信号比较强,干扰源较多,因此在所采用的抗干扰设计中,目前最常用的手段就是利用屏蔽技术来阻挡或减少电磁辐射干扰能量传输。屏蔽是采用导电或导磁体的封闭面(例如铁或铝材料的金属盒)将其内外两侧的空间进行电磁性隔离,将从一侧空间向另一侧空间传输的电磁能量抑制到了极小量,从而达到减弱外部干扰信号的效果。接地是提高电子设备电磁兼容能力的另一种重要方法。在电子式互感器的设计中采用浮地技术,将信号处理的抗干扰接线接在一个公共屏蔽层,尽量减少电源线同机壳之间的分布电容,可以使得在电磁干扰作用时,工作电源同机壳的电位同步浮动,大大降低了干扰造成的流过电源的浪涌电流,从而增加了抗共模干扰的能力。若利用双屏蔽电缆进行信号传输,可以采用在电缆两侧各用一层屏蔽电缆接地;外层屏蔽两侧接地,内层屏蔽一侧接地;外层屏蔽一侧接地,另一侧通过一个电容接地,内层屏蔽一侧接地等3种方法解决变电站电缆的EMC要求。对于工作电源的干扰的抑制,主要是采用电源滤波器的方法实现。同时对电源部分进行屏蔽以消除其辐射干扰;另外,数字电源与模拟电源的分开对于信号处理电路的工作亦大有裨益。