3.2.2 吸波材料

吸波材料的主要功能是将干扰源所产生的电磁辐射能量转化为其它能量(主要是热能)而耗散掉。根据损耗机理不同,可分为电阻型、电介质型和磁介质型三大类[4]。

电阻型吸波材料主要有碳精粉、石墨和SiC等,吸波能力主要取决于材料电阻率,由于这种材料吸收层厚度t与电磁波长λ成正比,通常t=0.6λ,故适合于高频段,若在100MHz时应用,材料厚度需达1.8m。

电介质型吸波材料有BaTiO2、铁电陶瓷等高介电材料,能量衰减主要来自介电损耗,而介电损耗与频率依赖关系较强,故吸收频带窄,且成本高,应用受到一定限制。

磁介质型吸波材料主要为铁氧体,利用铁氧体独特的复数磁导率产生的磁损耗机理,吸收电磁波,成本低廉,所以目前应用最为广泛。其中MnZn铁氧体EMI抑制材料主要用于低频,NiZn铁氧体EMI抑制材料主要用于高频,而羰基铁、铁基、镍基磁介质则可在大电流情况下应用,以解决铁氧体磁芯的磁饱和问题。

3.3 EMI抑制元器件技术

3.3.1 有源器件的开发与应用

开发和应用有源器件,要重点关注其电磁干扰发射和电磁敏感度这两项技术指标。有源模拟器件的敏感度取决于灵敏度和带宽,而灵敏度以器件的固有噪声为基础;逻辑器件的灵敏度取决于直流噪声容限和噪声抗扰度。有源器件有两种电磁发射源:传导干扰和辐射干扰。传导干扰通过电源线、接地线和互连线进行传输,并随频率增高而增大;辐射干扰通过器件本身或连线向外发射,并随频率的平方而增大。瞬态地电流是上述两种干扰的初始源,良好接地和各种去耦方式是减小地电流的主要手段。

逻辑器件的翻转速度快,所占频谱越宽,因此,在保证功能的前提下,不可过分追求响应速度。数字电路的干扰频谱很宽,是电子和电气设备中的重要干扰源,其电磁辐射可分为共模和差模两种形式。工作频率越高,辐射能量就越大;信号电平越高,辐射干扰就越强。为了控制差模辐射,必须将印制电路板上信号线、电源线和它们的回线紧靠在一起,以减少回路面积;为了控制共模辐射,可使用栅网地线或平面接地等良好接地方式,也可采用共模扼流圈。

3.3.2 抗EMI器件的开发与应用

具有良好屏蔽和接地措施的电子、电气产品,也仍然会有电磁干扰,此时应当合理选用抗EMI元器件。抗EMI器件的种类很多,滤波是压缩干扰频谱的基本手段,抗EMI滤波器是EMC技术的基础元器件之一,功能独特、门类繁多,在此仅举几例。

(1) 信号线滤波器

这是一类用于信号线的低通滤波器,用来滤除高频干扰成分。主要有线路板滤波器、屏蔽壳体馈通滤波器和连接器滤波器、滤波器阵列板等,通常由EMI磁芯和电容器组成π型或L型滤波网络。