1 》正常工作状态下,不致因通电电源电流而造成磁芯饱和。

2 》对高频干扰信号要有足够大的阻抗,且有一定的频宽,而对工作频率之信号电流有最小的阻抗。

3 》电感的温度系数应小,而分布电容宜小。

4 》直流电阻应尽量小。

5 》感应电感应尽量大,电感值需稳定。

6 》绕组间之绝缘性须满足安规要求。

共模电感线圈在制作时需要满足以下要求:

1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

2)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

3)当线圈流过瞬时大电流时,磁芯不要出现饱和。

4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

通过电路图可知晓共模信号由L3和C2、C3组成的共模滤波器抑制,实际L3与C2和C3构成两路LC串联电路,分别吸收L和N在线的噪声。只要确定滤波电路的截止频率,也已知电容容量C,则可以下式求出电感L。

fo= 1/(2π√LC)L → 1/(2πfo)2C

通常EMI测试频宽如下:

传导干扰:150KHZ →30MHZ(注:VDE标准10KHZ - 30M)

辐射干扰:30MHZ 1GHZ

实际的滤波器无法达到理想滤波器那样陡峭的阻抗曲线,通常可将截止频率设定在50KHZ左右。在此,假设f o = 50KHZ,则

L =1/(2πfo)2C = 1/ [( 2*3.14*50000)2 *3300*10-12] = 3.07mH

L1、L2、C1组成(低通)常模滤波器,线间电容有1.0uF,则常模电感为:

L = 1/ [( 2*3.14*50000)2 *1*10-6] = 10.14uH

共模电感的作用与计算

由此,可得到理论要求的电感值,若想获得更低的截止频率fo,则可进一步加大电感值,截止频率一般不低于10KHZ。理论上电感量越高对EMI抑制效果越好,但过高的电感将使截止频率更低,而实际的滤波器只能做到一定宽带,也就使高频噪声的抑制效果变差(一般开关电源的噪声成分约为5 ~10MHZ间,但也有超过10MHZ之情形)。另外,电感量愈高,则绕线匝数愈多,或CORE之ui越高,如此将造成低频阻抗增加(DCR变大)。匝数增加使分布电容也随之增大(如图4),使高频电流全部经此电容流通。过高的ui使CORE极易饱和,同时制作也极困难,成本也较高。

共模电感导线截面积与电流的关系:电流大小与导线截面积成正比。

一般铜线安全计算方法是:

2.5平方毫米铜电源线的安全载流量--28A